DEV Community

Cover image for Four Types of Bar Charts in Python - Based on Tabular Data
Luca Liu
Luca Liu

Posted on • Edited on

Four Types of Bar Charts in Python - Based on Tabular Data

Simple Bar Charts in Python Based on Tabular Data

import matplotlib.pyplot as plt import pandas as pd df = pd.DataFrame({'x': ['A', 'B', 'C', 'D', 'E'], 'y': [50, 30, 70, 80, 60]}) plt.bar(df['x'], df['y'], align='center', width=0.5, color='b', label='data') plt.xlabel('X axis') plt.ylabel('Y axis') plt.title('Bar chart') plt.legend() plt.show() 
Enter fullscreen mode Exit fullscreen mode

Stacked bar chart in Python Based on Tabular Data

import matplotlib.pyplot as plt import pandas as pd df = pd.DataFrame({'x': ['A', 'B', 'C', 'D', 'E'], 'y1': [50, 30, 70, 80, 60], 'y2': [20, 40, 10, 50, 30]}) plt.bar(df['x'], df['y1'], align='center', width=0.5, color='b', label='Series 1') plt.bar(df['x'], df['y2'], bottom=df['y1'], align='center', width=0.5, color='g', label='Series 2') plt.xlabel('X axis') plt.ylabel('Y axis') plt.title('Stacked Bar Chart') plt.legend() plt.show() 
Enter fullscreen mode Exit fullscreen mode

Grouped bar chart based on Tabular Data in Python

import matplotlib.pyplot as plt import pandas as pd import numpy as np # Prepare the data df = pd.DataFrame({ 'group': ['G1', 'G2', 'G3', 'G4', 'G5'], 'men_means': [20, 35, 30, 35, 27], 'women_means': [25, 32, 34, 20, 25] }) ind = np.arange(len(df)) # x-axis position width = 0.35 # width of each bar  # Plot the bar chart fig, ax = plt.subplots() rects1 = ax.bar(ind, df['men_means'], width, color='r') rects2 = ax.bar(ind + width, df['women_means'], width, color='y') # Add labels, legend, and axis labels ax.set_xticks(ind + width / 2) ax.set_xticklabels(df['group']) ax.legend((rects1[0], rects2[0]), ('Men', 'Women')) ax.set_xlabel('Groups') ax.set_ylabel('Scores') # Display the plot plt.show() 
Enter fullscreen mode Exit fullscreen mode

Percent stacked bar chart based on Tabular Data in Python

import matplotlib.pyplot as plt import pandas as pd # Prepare the data df = pd.DataFrame({ 'x': ['Group 1', 'Group 2', 'Group 3', 'Group 4', 'Group 5'], 'y1': [10, 20, 30, 25, 30], 'y2': [20, 25, 30, 15, 20], 'y3': [30, 30, 25, 20, 10] }) # calculate percentage y_percent = df.iloc[:, 1:].div(df.iloc[:, 1:].sum(axis=1), axis=0) * 100 # plot the chart fig, ax = plt.subplots() ax.bar(df['x'], y_percent.iloc[:, 0], label='Series 1', color='r') ax.bar(df['x'], y_percent.iloc[:, 1], bottom=y_percent.iloc[:, 0], label='Series 2', color='g') ax.bar(df['x'], y_percent.iloc[:, 2], bottom=y_percent.iloc[:, :2].sum(axis=1), label='Series 3', color='b') # Display the plot plt.show() 
Enter fullscreen mode Exit fullscreen mode

Explore more

Thank you for taking the time to explore data-related insights with me. I appreciate your engagement.

🚀 Connect with me on LinkedIn

🎃 Connect with me on X

🌍 Connect with me on Instagram

Top comments (0)