DEV Community

Cover image for Project Euler - Problem 7 - 10001st prime
Jingles (Hong Jing)
Jingles (Hong Jing)

Posted on • Originally published at jinglescode.github.io

Project Euler - Problem 7 - 10001st prime

Hi Dev,

I am currently on this Project Euler Challenge journey. And it is my 7^th day! Yay~💪🏻

Today's problem 7 is particularly easy until the test case; to search for the 10001^th prime number.

I will share with you my thought process and two things I learnt today about prime numbers.

The problem

By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.

What is the nth prime number?

Given num a prime number?

We need to find out any given number is a prime number; we build this function similar to the one used for solution 3.

function is_prime_num(num) { if (num % 2 === 0 || num % 3 === 0){ return true; } var i = 5; while (i <= Math.ceil(Math.sqrt(num))) { if (num % i === 0) return false; if (num % (i + 2) === 0) return false; i+= 6; } return true; } 

Today I learnt that #1

prime numbers always satisfy the 6n+1 or 6n-1 conditions, but that doesn't mean that all numbers of that meet the conditions are prime numbers [source]

Lets visualise this with examples:

// 6n – 1: → 5, 11, 17, 23, 29, 35, 41, ... // 6n + 1: → 7, 13, 19, 25, 31, 37, 43, ... 

This means that we can save a lot of computation, by extracting the numbers with this formula until we get the number of prime numbers we need.

function generate_prime_numbers(n){ var list_prime_numbers = [2, 3]; for(var i=1;i<n;i++){ current_prime = 6*i - 1; if(is_prime_num(current_prime)){ list_prime_numbers.push(current_prime); } current_prime = 6*i + 1; if(is_prime_num(current_prime)){ list_prime_numbers.push(current_prime); } } } 

Unfortunately, it did not return the correct result for 1000 and 10001. The results are as follows:

Test value: 6 Output: 13 Took 0.22499999613501132 ms Test value: 10 Output: 29 Took 0.04499999340623617 ms Test value: 100 Output: 541 Took 0.2049999893642962 ms Test value: 1000 Output: 5987 Took 4.014999984065071 ms Test value: 10001 Output: 59999 Took 32.11999998893589 ms 

The expected output for 1000 and 10001:

nthPrime(1000) should return 7919. nthPrime(10001) should return 104743. 

Today I learnt that #2

There is an upper bound to n^th prime number, and we can calculate the upper bound with this formula: n * (Math.log(n) + Math.log(Math.log(n))) [source]

function upper_bound_for_n_prime(n){ if(n<6){ return 13; } return n * (Math.log(n) + Math.log(Math.log(n))) } 

With this knowledge, we can safely use while loop to generate prime numbers and stop once we reached this upper bound number.

function generate_prime_numbers(n){ var list_prime_numbers = [2, 3]; var upper_bound = upper_bound_for_n_prime(n); var current_prime = 3; var i = 0; while(current_prime < upper_bound){ i+=1; current_prime = 6*i - 1; if(is_prime_num(current_prime)){ list_prime_numbers.push(current_prime); } current_prime = 6*i + 1; if(is_prime_num(current_prime)){ list_prime_numbers.push(current_prime); } } return list_prime_numbers.slice(0, n); } 

All together now

// list of numbers we wanna test var test_values = [6, 10, 100, 1000, 10001]; // this function execute the code and records the time to execute function run_function(func, test_values) { for(var i in test_values){ console.log('Test value:', test_values[i]); var t0 = performance.now(); console.log('Output:', func(test_values[i])); var t1 = performance.now(); console.log("Took " + (t1 - t0) + " ms"); console.log(); } } function nthPrime(n) { var prime_numbers = generate_prime_numbers(n); return prime_numbers[prime_numbers.length-1]; } // today i learnt that, the upper bound for nth prime number cannot be larger than function upper_bound_for_n_prime(n){ if(n<6){ return 13; } return n * (Math.log(n) + Math.log(Math.log(n))) } function is_prime_num(num) { if (num % 2 === 0 || num % 3 === 0){ return true; } var i = 5; while (i <= Math.ceil(Math.sqrt(num))) { if (num % i === 0) return false; if (num % (i + 2) === 0) return false; i+= 6; } return true; } // lets generate the prime numbers give that all prime numbers > 3 are fulfils `6n – 1` or `6n + 1`: // 6n – 1: → 5, 11, 17, 23, 29, 35, 41, ... // 6n + 1: → 7, 13, 19, 25, 31, 37, 43, ... function generate_prime_numbers(n){ var list_prime_numbers = [2, 3]; var upper_bound = upper_bound_for_n_prime(n); var current_prime = 3; var i = 0; while(current_prime < upper_bound){ i+=1; current_prime = 6*i - 1; if(is_prime_num(current_prime)){ list_prime_numbers.push(current_prime); } current_prime = 6*i + 1; if(is_prime_num(current_prime)){ list_prime_numbers.push(current_prime); } } return list_prime_numbers.slice(0, n); } run_function(nthPrime, test_values); 

Output:

Test value: 6 Output: 13 Took 0.2099999983329326 ms Test value: 10 Output: 29 Took 0.040000013541430235 ms Test value: 100 Output: 541 Took 0.2500000118743628 ms Test value: 1000 Output: 7919 Took 5.414999992353842 ms Test value: 10001 Output: 104743 Took 73.96999999764375 ms 

Top comments (0)