DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

SiLU and Softplus in PyTorch

Buy Me a Coffee

*Memos:

SiLU() can get the 0D or more D tensor of the zero or more values computed by SiLU function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is inplace(Optional-Default:False-Type:bool): *Memos:
    • It does in-place operation.
    • Keep it False because it's problematic with True.
  • The 1st argument is input(Required-Type:tensor of float).

Image description

import torch from torch import nn my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.]) silu = nn.SiLU() silu(input=my_tensor) # tensor([7.9973, -0.1423, 0.0000, 0.7311, 4.9665, -0.2384, -0.2689, 3.9281])  silu # SiLU()  silu.inplace # False  silu = nn.SiLU(inplace=True) silu(input=my_tensor) # tensor([7.9973, -0.1423, 0.0000, 0.7311, 4.9665, -0.2384, -0.2689, 3.9281])  my_tensor = torch.tensor([[8., -3., 0., 1.], [5., -2., -1., 4.]]) silu = nn.SiLU() silu(input=my_tensor) # tensor([[7.9973, -0.1423, 0.0000, 0.7311], # [4.9665, -0.2384, -0.2689, 3.9281]])  my_tensor = torch.tensor([[[8., -3.], [0., 1.]], [[5., -2.], [-1., 4.]]]) silu = nn.SiLU() silu(input=my_tensor) # tensor([[[7.9973, -0.1423], [0.0000, 0.7311]], # [[4.9665, -0.2384], [-0.2689, 3.9281]]]) 
Enter fullscreen mode Exit fullscreen mode

Softplus() can get the 0D or more D tensor of the zero or more values computed by Mish function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is beta(Optional-Default:1.0-Type:float). *It's applied to Mish function.
  • The 2nd argument for initialization is threshold(Optional-Default:20.0-Type:float). *The values above it reverted.
  • The 1st argument is input(Required-Type:tensor of float).

Image description

import torch from torch import nn my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.]) mish = nn.Mish() mish(input=my_tensor) # tensor([8.0000, -0.1456, 0.0000, 0.8651, 4.9996, -0.2525, -0.3034, 3.9974])  mish # Mish()  mish.inplace # False  mish = nn.Mish(inplace=True) mish(input=my_tensor) # tensor([8.0000, -0.1456, 0.0000, 0.8651, 4.9996, -0.2525, -0.3034, 3.9974])  my_tensor = torch.tensor([[8., -3., 0., 1.], [5., -2., -1., 4.]]) mish = nn.Mish() mish(input=my_tensor) # tensor([[8.0000, -0.1456, 0.0000, 0.8651], # [4.9996, -0.2525, -0.3034, 3.9974]])  my_tensor = torch.tensor([[[8., -3.], [0., 1.]], [[5., -2.], [-1., 4.]]]) mish = nn.Mish() mish(input=my_tensor) # tensor([[[8.0000, -0.1456], [0.0000, 0.8651]] # [[4.9996, -0.2525], [-0.3034, 3.9974]]]) 
Enter fullscreen mode Exit fullscreen mode

Top comments (0)