DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

SELU and CELU in PyTorch

Buy Me a Coffee

*Memos:

SELU() can get the 0D or more D tensor of the zero or more values computed by SELU function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is inplace(Optional-Default:False-Type:bool): *Memos:
    • It does in-place operation.
    • Keep it False because it's problematic with True.
  • The 1st argument is input(Required-Type:tensor of float).

Image description

import torch from torch import nn my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.]) selu = nn.SELU() selu(input=my_tensor) # tensor([8.4056, -1.6706, 0.0000, 1.0507, 5.2535, -1.5202, -1.1113, 4.2028])  selu # SELU()  selu.inplace # False  selu = nn.SELU(inplace=True) selu(input=my_tensor) # tensor([8.4056, -1.6706, 0.0000, 1.0507, 5.2535, -1.5202, -1.1113, 4.2028])  my_tensor = torch.tensor([[8., -3., 0., 1.], [5., -2., -1., 4.]]) selu = nn.SELU() selu(input=my_tensor) # tensor([[8.4056, -1.6706, 0.0000, 1.0507], # [5.2535, -1.5202, -1.1113, 4.2028]])  my_tensor = torch.tensor([[[8., -3.], [0., 1.]], [[5., -2.], [-1., 4.]]]) selu = nn.SELU() selu(input=my_tensor) # tensor([[[8.4056, -1.6706], [0.0000, 1.0507]], # [[5.2535, -1.5202], [-1.1113, 4.2028]]]) 
Enter fullscreen mode Exit fullscreen mode

CELU() can get the 0D or more D tensor of the zero or more values computed by CELU function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is alpha(Optional-Default:1.0-Type:float). *It's applied to negative input values.
  • The 2nd argument for initialization is inplace(Optional-Default:False-Type:bool): *Memos:
    • It does in-place operation.
    • Keep it False because it's problematic with True.
  • The 1st argument is input(Required-Type:tensor of float).

Image description

import torch from torch import nn my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.]) celu = nn.CELU() celu(input=my_tensor) # tensor([8.0000, -0.9502, 0.0000, 1.0000, 5.0000, -0.8647, -0.6321, 4.0000])  celu # CELU(alpha=1.0)  celu.alpha # 1.0  celu.inplace # False  celu = nn.CELU(alpha=1.0, inplace=True) celu(input=my_tensor) # tensor([8.0000, -0.9502, 0.0000, 1.0000, 5.0000, -0.8647, -0.6321, 4.0000])  my_tensor = torch.tensor([[8., -3., 0., 1.], [5., -2., -1., 4.]]) celu = nn.CELU() celu(input=my_tensor) # tensor([[8.0000, -0.9502, 0.0000, 1.0000], # [5.0000, -0.8647, -0.6321, 4.0000]])  my_tensor = torch.tensor([[[8., -3.], [0., 1.]], [[5., -2.], [-1., 4.]]]) celu = nn.CELU() celu(input=my_tensor) # tensor([[[8.0000, -0.9502], [0.0000, 1.0000]], # [[5.0000, -0.8647], [-0.6321, 4.0000]]]) 
Enter fullscreen mode Exit fullscreen mode

Top comments (0)