*Memos:
- My post explains AugMix() about no arguments and
full
argument. - My post explains AugMix() about
severity
argument (1). - My post explains AugMix() about
severity
argument (2). - My post explains AugMix() about
mixture_width
argument (1). - My post explains AugMix() about
mixture_width
argument (2). - My post explains AugMix() about
chain_depth
argument (2). - My post explains AugMix() about
alpha
argument (1). - My post explains AugMix() about
alpha
argument (2).
AugMix() can randomly do AugMix to an image as shown below. *It's about chain_depth
argument (1):
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import AugMix from torchvision.transforms.functional import InterpolationMode origin_data = OxfordIIITPet( root="data", transform=None ) cd0_data = OxfordIIITPet( # `cd` is chain_depth. root="data", transform=AugMix(chain_depth=0) ) cd1_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=1) ) cd2_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=2) ) cd5_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=5) ) cd10_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=10) ) cd25_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=25) ) cd50_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=50) ) cdn1_data = OxfordIIITPet( # `n` is negative. root="data", transform=AugMix(chain_depth=-1) ) cdn2_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=-2) ) cdn5_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=-5) ) cdn10_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=-10) ) cdn25_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=-25) ) cdn50_data = OxfordIIITPet( root="data", transform=AugMix(chain_depth=-50) ) s10cd0_data = OxfordIIITPet( # `s` is severity. root="data", transform=AugMix(severity=10, chain_depth=0) ) s10cd1_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, chain_depth=1) ) s10cd2_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, chain_depth=2) ) s10cd5_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, chain_depth=5) ) s10cd10_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, chain_depth=10) ) s10cd25_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, chain_depth=25) ) s10cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, chain_depth=50) ) mw50cd0_data = OxfordIIITPet( # `mw` is mixture_width. root="data", transform=AugMix(mixture_width=50, chain_depth=0) ) mw50cd1_data = OxfordIIITPet( root="data", transform=AugMix(mixture_width=50, chain_depth=1) ) mw50cd2_data = OxfordIIITPet( root="data", transform=AugMix(mixture_width=50, chain_depth=2) ) mw50cd5_data = OxfordIIITPet( root="data", transform=AugMix(mixture_width=50, chain_depth=5) ) mw50cd10_data = OxfordIIITPet( root="data", transform=AugMix(mixture_width=50, chain_depth=10) ) mw50cd25_data = OxfordIIITPet( root="data", transform=AugMix(mixture_width=50, chain_depth=25) ) mw50cd50_data = OxfordIIITPet( root="data", transform=AugMix(mixture_width=50, chain_depth=50) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=cd0_data, main_title="cd0_data") show_images1(data=cd1_data, main_title="cd1_data") show_images1(data=cd2_data, main_title="cd2_data") show_images1(data=cd5_data, main_title="cd5_data") show_images1(data=cd10_data, main_title="cd10_data") show_images1(data=cd25_data, main_title="cd25_data") show_images1(data=cd50_data, main_title="cd50_data") print() show_images1(data=cd0_data, main_title="cd0_data") show_images1(data=cdn1_data, main_title="cdn1_data") show_images1(data=cdn2_data, main_title="cdn2_data") show_images1(data=cdn5_data, main_title="cdn5_data") show_images1(data=cdn10_data, main_title="cdn10_data") show_images1(data=cdn25_data, main_title="cdn25_data") show_images1(data=cdn50_data, main_title="cdn50_data") print() show_images1(data=s10cd0_data, main_title="s10cd0_data") show_images1(data=s10cd1_data, main_title="s10cd1_data") show_images1(data=s10cd2_data, main_title="s10cd2_data") show_images1(data=s10cd5_data, main_title="s10cd5_data") show_images1(data=s10cd10_data, main_title="s10cd10_data") show_images1(data=s10cd25_data, main_title="s10cd25_data") show_images1(data=s10cd50_data, main_title="s10cd50_data") print() show_images1(data=mw50cd0_data, main_title="mw50cd0_data") show_images1(data=mw50cd1_data, main_title="mw50cd1_data") show_images1(data=mw50cd2_data, main_title="mw50cd2_data") show_images1(data=mw50cd5_data, main_title="mw50cd5_data") show_images1(data=mw50cd10_data, main_title="mw50cd10_data") show_images1(data=mw50cd25_data, main_title="mw50cd25_data") show_images1(data=mw50cd50_data, main_title="mw50cd50_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0, ao=True, ip=InterpolationMode.BILINEAR, f=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) am = AugMix(severity=s, mixture_width=mw, chain_depth=cd, alpha=a, all_ops=ao, interpolation=ip, fill=f) plt.imshow(X=am(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="cd0_data", cd=0) show_images2(data=origin_data, main_title="cd1_data", cd=1) show_images2(data=origin_data, main_title="cd2_data", cd=2) show_images2(data=origin_data, main_title="cd5_data", cd=5) show_images2(data=origin_data, main_title="cd10_data", cd=10) show_images2(data=origin_data, main_title="cd25_data", cd=25) show_images2(data=origin_data, main_title="cd50_data", cd=50) print() show_images2(data=origin_data, main_title="cd0_data", cd=0) show_images2(data=origin_data, main_title="cdn1_data", cd=-1) show_images2(data=origin_data, main_title="cdn2_data", cd=-2) show_images2(data=origin_data, main_title="cdn5_data", cd=-5) show_images2(data=origin_data, main_title="cdn10_data", cd=-10) show_images2(data=origin_data, main_title="cdn25_data", cd=-25) show_images2(data=origin_data, main_title="cdn50_data", cd=-50) print() show_images2(data=origin_data, main_title="s10cd0_data", s=10, cd=0) show_images2(data=origin_data, main_title="s10cd1_data", s=10, cd=1) show_images2(data=origin_data, main_title="s10cd2_data", s=10, cd=2) show_images2(data=origin_data, main_title="s10cd5_data", s=10, cd=5) show_images2(data=origin_data, main_title="s10cd10_data", s=10, cd=10) show_images2(data=origin_data, main_title="s10cd25_data", s=10, cd=25) show_images2(data=origin_data, main_title="s10cd50_data", s=10, cd=50) print() show_images2(data=origin_data, main_title="mw50cd0_data", mw=50, cd=0) show_images2(data=origin_data, main_title="mw50cd1_data", mw=50, cd=1) show_images2(data=origin_data, main_title="mw50cd2_data", mw=50, cd=2) show_images2(data=origin_data, main_title="mw50cd5_data", mw=50, cd=5) show_images2(data=origin_data, main_title="mw50cd10_data", mw=50, cd=10) show_images2(data=origin_data, main_title="mw50cd25_data", mw=50, cd=25) show_images2(data=origin_data, main_title="mw50cd50_data", mw=50, cd=50)
Top comments (0)