*Memos:
- My post explains AugMix() about no arguments and
full
argument. - My post explains AugMix() about
severity
argument (2). - My post explains AugMix() about
mixture_width
argument (1). - My post explains AugMix() about
mixture_width
argument (2). - My post explains AugMix() about
chain_depth
argument (1). - My post explains AugMix() about
chain_depth
argument (2). - My post explains AugMix() about
alpha
argument (1). - My post explains AugMix() about
alpha
argument (2).
AugMix() can randomly do AugMix to an image as shown below. *It's about severity
argument (1):
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import AugMix from torchvision.transforms.functional import InterpolationMode origin_data = OxfordIIITPet( root="data", transform=None ) s1_data = OxfordIIITPet( # `s` is severity. root="data", transform=AugMix(severity=1) ) s2_data = OxfordIIITPet( root="data", transform=AugMix(severity=2) ) s3_data = OxfordIIITPet( root="data", transform=AugMix(severity=3) ) s4_data = OxfordIIITPet( root="data", transform=AugMix(severity=4) ) s5_data = OxfordIIITPet( root="data", transform=AugMix(severity=5) ) s6_data = OxfordIIITPet( root="data", transform=AugMix(severity=6) ) s7_data = OxfordIIITPet( root="data", transform=AugMix(severity=7) ) s8_data = OxfordIIITPet( root="data", transform=AugMix(severity=8) ) s9_data = OxfordIIITPet( root="data", transform=AugMix(severity=9) ) s10_data = OxfordIIITPet( root="data", transform=AugMix(severity=10) ) s1mw50_data = OxfordIIITPet( # `mw` is mixture_width. root="data", transform=AugMix(severity=1, mixture_width=50) ) s2mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=2, mixture_width=50) ) s3mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=3, mixture_width=50) ) s4mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=4, mixture_width=50) ) s5mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=5, mixture_width=50) ) s6mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=6, mixture_width=50) ) s7mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=7, mixture_width=50) ) s8mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=8, mixture_width=50) ) s9mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=9, mixture_width=50) ) s10mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, mixture_width=50) ) s1cd50_data = OxfordIIITPet( # `cd` is chain_depth. root="data", transform=AugMix(severity=1, chain_depth=50) ) s2cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=2, chain_depth=50) ) s3cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=3, chain_depth=50) ) s4cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=4, chain_depth=50) ) s5cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=5, chain_depth=50) ) s6cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=6, chain_depth=50) ) s7cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=7, chain_depth=50) ) s8cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=8, chain_depth=50) ) s9cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=9, chain_depth=50) ) s10cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, chain_depth=50) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=s1_data, main_title="s1_data") show_images1(data=s2_data, main_title="s2_data") show_images1(data=s3_data, main_title="s3_data") show_images1(data=s4_data, main_title="s4_data") show_images1(data=s5_data, main_title="s5_data") show_images1(data=s6_data, main_title="s6_data") show_images1(data=s7_data, main_title="s7_data") show_images1(data=s8_data, main_title="s8_data") show_images1(data=s9_data, main_title="s9_data") show_images1(data=s10_data, main_title="s10_data") print() show_images1(data=s1mw50_data, main_title="s1mw50_data") show_images1(data=s2mw50_data, main_title="s2mw50_data") show_images1(data=s3mw50_data, main_title="s3mw50_data") show_images1(data=s4mw50_data, main_title="s4mw50_data") show_images1(data=s5mw50_data, main_title="s5mw50_data") show_images1(data=s6mw50_data, main_title="s6mw50_data") show_images1(data=s7mw50_data, main_title="s7mw50_data") show_images1(data=s8mw50_data, main_title="s8mw50_data") show_images1(data=s9mw50_data, main_title="s9mw50_data") show_images1(data=s10mw50_data, main_title="s10mw50_data") print() show_images1(data=s1cd50_data, main_title="s1cd50_data") show_images1(data=s2cd50_data, main_title="s2cd50_data") show_images1(data=s3cd50_data, main_title="s3cd50_data") show_images1(data=s4cd50_data, main_title="s4cd50_data") show_images1(data=s5cd50_data, main_title="s5cd50_data") show_images1(data=s6cd50_data, main_title="s6cd50_data") show_images1(data=s7cd50_data, main_title="s7cd50_data") show_images1(data=s8cd50_data, main_title="s8cd50_data") show_images1(data=s9cd50_data, main_title="s9cd50_data") show_images1(data=s10cd50_data, main_title="s10cd50_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0, ao=True, ip=InterpolationMode.BILINEAR, f=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) am = AugMix(severity=s, mixture_width=mw, chain_depth=cd, alpha=a, all_ops=ao, interpolation=ip, fill=f) plt.imshow(X=am(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="s1_data", s=1) show_images2(data=origin_data, main_title="s2_data", s=2) show_images2(data=origin_data, main_title="s3_data", s=3) show_images2(data=origin_data, main_title="s4_data", s=4) show_images2(data=origin_data, main_title="s5_data", s=5) show_images2(data=origin_data, main_title="s6_data", s=6) show_images2(data=origin_data, main_title="s7_data", s=7) show_images2(data=origin_data, main_title="s8_data", s=8) show_images2(data=origin_data, main_title="s9_data", s=9) show_images2(data=origin_data, main_title="s10_data", s=10) print() show_images2(data=origin_data, main_title="s1mw50_data", s=1, mw=50) show_images2(data=origin_data, main_title="s2mw50_data", s=2, mw=50) show_images2(data=origin_data, main_title="s3mw50_data", s=3, mw=50) show_images2(data=origin_data, main_title="s4mw50_data", s=4, mw=50) show_images2(data=origin_data, main_title="s5mw50_data", s=5, mw=50) show_images2(data=origin_data, main_title="s6mw50_data", s=6, mw=50) show_images2(data=origin_data, main_title="s7mw50_data", s=7, mw=50) show_images2(data=origin_data, main_title="s8mw50_data", s=8, mw=50) show_images2(data=origin_data, main_title="s9mw50_data", s=9, mw=50) show_images2(data=origin_data, main_title="s10mw50_data", s=10, mw=50) print() show_images2(data=origin_data, main_title="s1cd50_data", s=1, cd=50) show_images2(data=origin_data, main_title="s2cd50_data", s=2, cd=50) show_images2(data=origin_data, main_title="s3cd50_data", s=3, cd=50) show_images2(data=origin_data, main_title="s4cd50_data", s=4, cd=50) show_images2(data=origin_data, main_title="s5cd50_data", s=5, cd=50) show_images2(data=origin_data, main_title="s6cd50_data", s=6, cd=50) show_images2(data=origin_data, main_title="s7cd50_data", s=7, cd=50) show_images2(data=origin_data, main_title="s8cd50_data", s=8, cd=50) show_images2(data=origin_data, main_title="s9cd50_data", s=9, cd=50) show_images2(data=origin_data, main_title="s10cd50_data", s=10, cd=50)
Top comments (0)