温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用PyTorch实现MNIST手写体识别

发布时间:2021-05-24 13:52:40 来源:亿速云 阅读:280 作者:小新 栏目:开发技术

这篇文章将为大家详细讲解有关如何使用PyTorch实现MNIST手写体识别,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

实验环境

win10 + anaconda + jupyter notebook

Pytorch2.1.0

Python3.7

gpu环境(可选)

MNIST数据集介绍

MNIST 包括6万张28x28的训练样本,1万张测试样本,可以说是CV里的“Hello Word”。本文使用的CNN网络将MNIST数据的识别率提高到了99%。下面我们就开始进行实战。

导入包

import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms torch.__version__

定义超参数

BATCH_SIZE=512 EPOCHS=20  DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

数据集

我们直接使用PyTorch中自带的dataset,并使用DataLoader对训练数据和测试数据分别进行读取。如果下载过数据集这里download可选择False

train_loader = torch.utils.data.DataLoader(     datasets.MNIST('data', train=True, download=True,              transform=transforms.Compose([               transforms.ToTensor(),               transforms.Normalize((0.1307,), (0.3081,))             ])),     batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader(     datasets.MNIST('data', train=False, transform=transforms.Compose([               transforms.ToTensor(),               transforms.Normalize((0.1307,), (0.3081,))             ])),     batch_size=BATCH_SIZE, shuffle=True)

定义网络

该网络包括两个卷积层和两个线性层,最后输出10个维度,即代表0-9十个数字。

class ConvNet(nn.Module):   def __init__(self):     super().__init__()     self.conv1=nn.Conv2d(1,10,5) # input:(1,28,28) output:(10,24,24)      self.conv2=nn.Conv2d(10,20,3) # input:(10,12,12) output:(20,10,10)     self.fc1 = nn.Linear(20*10*10,500)     self.fc2 = nn.Linear(500,10)   def forward(self,x):     in_size = x.size(0)     out = self.conv1(x)     out = F.relu(out)     out = F.max_pool2d(out, 2, 2)      out = self.conv2(out)     out = F.relu(out)     out = out.view(in_size,-1)     out = self.fc1(out)     out = F.relu(out)     out = self.fc2(out)     out = F.log_softmax(out,dim=1)     return out

实例化网络

model = ConvNet().to(DEVICE) # 将网络移动到gpu上 optimizer = optim.Adam(model.parameters()) # 使用Adam优化器

定义训练函数

def train(model, device, train_loader, optimizer, epoch):   model.train()   for batch_idx, (data, target) in enumerate(train_loader):     data, target = data.to(device), target.to(device)     optimizer.zero_grad()     output = model(data)     loss = F.nll_loss(output, target)     loss.backward()     optimizer.step()     if(batch_idx+1)%30 == 0:        print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(         epoch, batch_idx * len(data), len(train_loader.dataset),         100. * batch_idx / len(train_loader), loss.item()))

定义测试函数

def test(model, device, test_loader):   model.eval()   test_loss = 0   correct = 0   with torch.no_grad():     for data, target in test_loader:       data, target = data.to(device), target.to(device)       output = model(data)       test_loss += F.nll_loss(output, target, reduction='sum').item() # 将一批的损失相加       pred = output.max(1, keepdim=True)[1] # 找到概率最大的下标       correct += pred.eq(target.view_as(pred)).sum().item()   test_loss /= len(test_loader.dataset)   print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(     test_loss, correct, len(test_loader.dataset),     100. * correct / len(test_loader.dataset)))

开始训练

for epoch in range(1, EPOCHS + 1):   train(model, DEVICE, train_loader, optimizer, epoch)   test(model, DEVICE, test_loader)

实验结果

Train Epoch: 1 [14848/60000 (25%)]	Loss: 0.375058 Train Epoch: 1 [30208/60000 (50%)]	Loss: 0.255248 Train Epoch: 1 [45568/60000 (75%)]	Loss: 0.128060 Test set: Average loss: 0.0992, Accuracy: 9690/10000 (97%) Train Epoch: 2 [14848/60000 (25%)]	Loss: 0.093066 Train Epoch: 2 [30208/60000 (50%)]	Loss: 0.087888 Train Epoch: 2 [45568/60000 (75%)]	Loss: 0.068078 Test set: Average loss: 0.0599, Accuracy: 9816/10000 (98%) Train Epoch: 3 [14848/60000 (25%)]	Loss: 0.043926 Train Epoch: 3 [30208/60000 (50%)]	Loss: 0.037321 Train Epoch: 3 [45568/60000 (75%)]	Loss: 0.068404 Test set: Average loss: 0.0416, Accuracy: 9859/10000 (99%) Train Epoch: 4 [14848/60000 (25%)]	Loss: 0.031654 Train Epoch: 4 [30208/60000 (50%)]	Loss: 0.041341 Train Epoch: 4 [45568/60000 (75%)]	Loss: 0.036493 Test set: Average loss: 0.0361, Accuracy: 9873/10000 (99%) Train Epoch: 5 [14848/60000 (25%)]	Loss: 0.027688 Train Epoch: 5 [30208/60000 (50%)]	Loss: 0.019488 Train Epoch: 5 [45568/60000 (75%)]	Loss: 0.018023 Test set: Average loss: 0.0344, Accuracy: 9875/10000 (99%) Train Epoch: 6 [14848/60000 (25%)]	Loss: 0.024212 Train Epoch: 6 [30208/60000 (50%)]	Loss: 0.018689 Train Epoch: 6 [45568/60000 (75%)]	Loss: 0.040412 Test set: Average loss: 0.0350, Accuracy: 9879/10000 (99%) Train Epoch: 7 [14848/60000 (25%)]	Loss: 0.030426 Train Epoch: 7 [30208/60000 (50%)]	Loss: 0.026939 Train Epoch: 7 [45568/60000 (75%)]	Loss: 0.010722 Test set: Average loss: 0.0287, Accuracy: 9892/10000 (99%) Train Epoch: 8 [14848/60000 (25%)]	Loss: 0.021109 Train Epoch: 8 [30208/60000 (50%)]	Loss: 0.034845 Train Epoch: 8 [45568/60000 (75%)]	Loss: 0.011223 Test set: Average loss: 0.0299, Accuracy: 9904/10000 (99%) Train Epoch: 9 [14848/60000 (25%)]	Loss: 0.011391 Train Epoch: 9 [30208/60000 (50%)]	Loss: 0.008091 Train Epoch: 9 [45568/60000 (75%)]	Loss: 0.039870 Test set: Average loss: 0.0341, Accuracy: 9890/10000 (99%) Train Epoch: 10 [14848/60000 (25%)]	Loss: 0.026813 Train Epoch: 10 [30208/60000 (50%)]	Loss: 0.011159 Train Epoch: 10 [45568/60000 (75%)]	Loss: 0.024884 Test set: Average loss: 0.0286, Accuracy: 9901/10000 (99%) Train Epoch: 11 [14848/60000 (25%)]	Loss: 0.006420 Train Epoch: 11 [30208/60000 (50%)]	Loss: 0.003641 Train Epoch: 11 [45568/60000 (75%)]	Loss: 0.003402 Test set: Average loss: 0.0377, Accuracy: 9894/10000 (99%) Train Epoch: 12 [14848/60000 (25%)]	Loss: 0.006866 Train Epoch: 12 [30208/60000 (50%)]	Loss: 0.012617 Train Epoch: 12 [45568/60000 (75%)]	Loss: 0.008548 Test set: Average loss: 0.0311, Accuracy: 9908/10000 (99%) Train Epoch: 13 [14848/60000 (25%)]	Loss: 0.010539 Train Epoch: 13 [30208/60000 (50%)]	Loss: 0.002952 Train Epoch: 13 [45568/60000 (75%)]	Loss: 0.002313 Test set: Average loss: 0.0293, Accuracy: 9905/10000 (99%) Train Epoch: 14 [14848/60000 (25%)]	Loss: 0.002100 Train Epoch: 14 [30208/60000 (50%)]	Loss: 0.000779 Train Epoch: 14 [45568/60000 (75%)]	Loss: 0.005952 Test set: Average loss: 0.0335, Accuracy: 9897/10000 (99%) Train Epoch: 15 [14848/60000 (25%)]	Loss: 0.006053 Train Epoch: 15 [30208/60000 (50%)]	Loss: 0.002559 Train Epoch: 15 [45568/60000 (75%)]	Loss: 0.002555 Test set: Average loss: 0.0357, Accuracy: 9894/10000 (99%) Train Epoch: 16 [14848/60000 (25%)]	Loss: 0.000895 Train Epoch: 16 [30208/60000 (50%)]	Loss: 0.004923 Train Epoch: 16 [45568/60000 (75%)]	Loss: 0.002339 Test set: Average loss: 0.0400, Accuracy: 9893/10000 (99%) Train Epoch: 17 [14848/60000 (25%)]	Loss: 0.004136 Train Epoch: 17 [30208/60000 (50%)]	Loss: 0.000927 Train Epoch: 17 [45568/60000 (75%)]	Loss: 0.002084 Test set: Average loss: 0.0353, Accuracy: 9895/10000 (99%) Train Epoch: 18 [14848/60000 (25%)]	Loss: 0.004508 Train Epoch: 18 [30208/60000 (50%)]	Loss: 0.001272 Train Epoch: 18 [45568/60000 (75%)]	Loss: 0.000543 Test set: Average loss: 0.0380, Accuracy: 9894/10000 (99%) Train Epoch: 19 [14848/60000 (25%)]	Loss: 0.001699 Train Epoch: 19 [30208/60000 (50%)]	Loss: 0.000661 Train Epoch: 19 [45568/60000 (75%)]	Loss: 0.000275 Test set: Average loss: 0.0339, Accuracy: 9905/10000 (99%) Train Epoch: 20 [14848/60000 (25%)]	Loss: 0.000441 Train Epoch: 20 [30208/60000 (50%)]	Loss: 0.000695 Train Epoch: 20 [45568/60000 (75%)]	Loss: 0.000467 Test set: Average loss: 0.0396, Accuracy: 9894/10000 (99%)

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

关于“如何使用PyTorch实现MNIST手写体识别”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI