温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

pytorch如何实现MNIST手写体识别

发布时间:2021-05-24 13:53:36 来源:亿速云 阅读:259 作者:小新 栏目:开发技术

小编给大家分享一下pytorch如何实现MNIST手写体识别,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

实验环境

pytorch 1.4
Windows 10
python 3.7
cuda 10.1(我笔记本上没有可以使用cuda的显卡)

实验过程

1. 确定我们要加载的库

import torch import torch.nn as nn import torchvision #这里面直接加载MNIST数据的方法 import torchvision.transforms as transforms # 将数据转为Tensor import torch.optim as optim  import torch.utils.data.dataloader as dataloader

2. 加载数据

这里使用所有数据进行训练,再使用所有数据进行测试

train_set = torchvision.datasets.MNIST(  root='./data', # 文件存储位置  train=True,  transform=transforms.ToTensor(),  download=True ) train_dataloader = dataloader.DataLoader(dataset=train_set,shuffle=False,batch_size=100)# dataset可以省 ''' dataloader返回(images,labels) 其中, images维度:[batch_size,1,28,28] labels:[batch_size],即图片对应的 ''' test_set = torchvision.datasets.MNIST(  root='./data',  train=False,  transform=transforms.ToTensor(),  download=True ) test_dataloader = dataloader.DataLoader(test_set,batch_size=100,shuffle=False) # dataset可以省

3. 定义神经网络模型

这里使用全神经网络作为模型

class NeuralNet(nn.Module):  def __init__(self,in_num,h_num,out_num):  super(NeuralNet,self).__init__()  self.ln1 = nn.Linear(in_num,h_num)  self.ln2 = nn.Linear(h_num,out_num)  self.relu = nn.ReLU()    def forward(self,x):  return self.ln2(self.relu(self.ln1(x)))

4. 模型训练

in_num = 784 # 输入维度 h_num = 500 # 隐藏层维度 out_num = 10 # 输出维度 epochs = 30 # 迭代次数 learning_rate = 0.001 USE_CUDA = torch.cuda.is_available() # 定义是否可以使用cuda model = NeuralNet(in_num,h_num,out_num) # 初始化模型 optimizer = optim.Adam(model.parameters(),lr=learning_rate) # 使用Adam loss_fn = nn.CrossEntropyLoss() # 损失函数 for e in range(epochs):  for i,data in enumerate(train_dataloader):  (images,labels) = data  images = images.reshape(-1,28*28) # [batch_size,784]  if USE_CUDA:   images = images.cuda() # 使用cuda   labels = labels.cuda() # 使用cuda     y_pred = model(images) # 预测  loss = loss_fn(y_pred,labels) # 计算损失    optimizer.zero_grad()  loss.backward()  optimizer.step()    n = e * i +1  if n % 100 == 0:   print(n,'loss:',loss.item())

训练模型的loss部分截图如下:

pytorch如何实现MNIST手写体识别

5. 测试模型

with torch.no_grad():  total = 0  correct = 0  for (images,labels) in test_dataloader:  images = images.reshape(-1,28*28)  if USE_CUDA:   images = images.cuda()   labels = labels.cuda()     result = model(images)  prediction = torch.max(result, 1)[1] # 这里需要有[1],因为它返回了概率还有标签  total += labels.size(0)  correct += (prediction == labels).sum().item()    print("The accuracy of total {} images: {}%".format(total, 100 * correct/total))

实验结果

最终实验的正确率达到:98.22%

pytorch如何实现MNIST手写体识别

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

以上是“pytorch如何实现MNIST手写体识别”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI