在Keras中进行模型融合和集成学习通常有两种方法:模型堆叠和模型平均。
model1 = Sequential() model1.add(Dense(128, activation='relu', input_shape=(input_shape,))) model1.add(Dense(64, activation='relu')) model2 = Sequential() model2.add(Dense(128, activation='relu', input_shape=(input_shape,))) model2.add(Dense(64, activation='relu')) merged_model = Sequential() merged_model.add(Merge([model1, model2], mode='concat')) merged_model.add(Dense(64, activation='relu')) merged_model.add(Dense(num_classes, activation='softmax')) model1 = Sequential() model1.add(Dense(128, activation='relu', input_shape=(input_shape,))) model1.add(Dense(64, activation='relu')) model1.add(Dense(num_classes, activation='softmax')) model2 = Sequential() model2.add(Dense(128, activation='relu', input_shape=(input_shape,))) model2.add(Dense(64, activation='relu')) model2.add(Dense(num_classes, activation='softmax')) model1.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model1.fit(X_train, y_train, batch_size=32, epochs=10) model2.fit(X_train, y_train, batch_size=32, epochs=10) predictions1 = model1.predict(X_test) predictions2 = model2.predict(X_test) average_predictions = (predictions1 + predictions2) / 2 这样,我们就可以利用模型融合和集成学习来提高模型的性能。需要注意的是,模型融合和集成学习需要谨慎选择模型,避免过拟合和不稳定性。