在PyTorch中进行模型迁移学习通常需要以下步骤:
import torch import torchvision.models as models pretrained_model = models.resnet18(pretrained=True) pretrained_model.fc = nn.Linear(pretrained_model.fc.in_features, num_classes) for param in pretrained_model.parameters(): param.requires_grad = False criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(pretrained_model.fc.parameters(), lr=0.001) for epoch in range(num_epochs): for images, labels in dataloader: optimizer.zero_grad() outputs = pretrained_model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() 通过以上步骤,你可以在PyTorch中进行模型迁移学习。你可以根据具体的任务需求对以上步骤进行调整和扩展。