在PyTorch中,可以通过以下几种方式来调整学习率:
import torch.optim as optim from torch.optim.lr_scheduler import StepLR optimizer = optim.SGD(model.parameters(), lr=0.1) scheduler = StepLR(optimizer, step_size=30, gamma=0.1) for epoch in range(num_epochs): # Train the model ... # Update learning rate scheduler.step() optimizer = optim.SGD(model.parameters(), lr=0.1) for epoch in range(num_epochs): # Train the model ... if epoch == 30: for param_group in optimizer.param_groups: param_group['lr'] = 0.01 optimizer = optim.SGD(model.parameters(), lr=0.1) for epoch in range(num_epochs): # Train the model ... if epoch % 10 == 0: for param_group in optimizer.param_groups: param_group['lr'] *= 0.1 以上是几种常见的调整学习率的方法,在训练神经网络时可以根据实际情况选择合适的方式调整学习率。