在PyTorch中处理多任务学习通常有两种方法:
class MultiTaskModel(nn.Module): def __init__(self): super(MultiTaskModel, self).__init__() self.shared_layers = nn.Sequential( nn.Linear(100, 50), nn.ReLU() ) self.task1_output = nn.Linear(50, 10) self.task2_output = nn.Linear(50, 5) def forward(self, x): x = self.shared_layers(x) output1 = self.task1_output(x) output2 = self.task2_output(x) return output1, output2 model = MultiTaskModel() criterion = nn.CrossEntropyLoss() output1, output2 = model(input) loss = 0.5 * criterion(output1, target1) + 0.5 * criterion(output2, target2) class SharedFeatureExtractor(nn.Module): def __init__(self): super(SharedFeatureExtractor, self).__init__() self.layers = nn.Sequential( nn.Linear(100, 50), nn.ReLU() ) def forward(self, x): return self.layers(x) class MultiTaskModel(nn.Module): def __init__(self): super(MultiTaskModel, self).__init__() self.shared_feature_extractor = SharedFeatureExtractor() self.task1_output = nn.Linear(50, 10) self.task2_output = nn.Linear(50, 5) def forward(self, x): x = self.shared_feature_extractor(x) output1 = self.task1_output(x) output2 = self.task2_output(x) return output1, output2 model = MultiTaskModel() criterion = nn.CrossEntropyLoss() output1, output2 = model(input) loss = 0.5 * criterion(output1, target1) + 0.5 * criterion(output2, target2) 无论采用哪种方法,都需要根据任务的不同设置不同的损失函数,并且根据实际情况调整不同任务之间的权重。