 
  Data Structure Data Structure
 Networking Networking
 RDBMS RDBMS
 Operating System Operating System
 Java Java
 MS Excel MS Excel
 iOS iOS
 HTML HTML
 CSS CSS
 Android Android
 Python Python
 C Programming C Programming
 C++ C++
 C# C#
 MongoDB MongoDB
 MySQL MySQL
 Javascript Javascript
 PHP PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Critical Connections in a Network in C++
Suppose there are n servers. And these are numbered from 0 to n-1 connected by an undirected server-to-server connections forming a network where connections[i] = [a,b] represents a connection between servers a and b. All servers are connected directly or through some other servers. Now, a critical connection is a connection that, if that is removed, it will make some server unable to reach some other server. We have to find all critical connections.
So, if the input is like n = 4 and connection = [[0,1],[1,2],[2,0],[1,3]],

then the output will be [[1,3]]
To solve this, we will follow these steps −
- Define one set 
- Define an array disc 
- Define an array low 
- Define one 2D array ret 
- Define a function dfs(), this will take node, par, one 2D array graph, 
-  if node is in of visited, then − - return 
 
- insert node into visited 
- disc[node] := time 
- low[node] := time 
- (increase time by 1) 
-  for all elements x in graph[node] -  if x is same as par, then − - Ignore following part, skip to the next iteration 
 
-  if x is not in visited, then − - dfs(x, node, graph) 
- low[node] := minimum of low[node] and low[x] 
-  if disc[node] < low[x], then − - insert { node, x } at the end of ret 
 
 
-  Otherwise - low[node] := minimum of low[node] and disc[x] 
 
 
-  
-  From the main method, do the following − - set size of disc as n + 1 
- set size of low as n + 1 
- time := 0 
- Define an array of lists of size graph n + 1 
-  for initialize i := 0, when i < size of v, update (increase i by 1), do − - u := v[i, 0] 
- w := v[i, 1] 
- insert w at the end of graph[u] 
- insert u at the end of graph[w] 
 
- dfs(0, -1, graph) 
- return ret 
 
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; void print_vector(vector<vector<auto> > v){    cout << "[";    for(int i = 0; i<v.size(); i++){       cout << "[";       for(int j = 0; j <v[i].size(); j++){          cout << v[i][j] << ", ";       }       cout << "],";    }    cout << "]"<<endl; } class Solution {    public:    set<int> visited;    vector<int> disc;    vector<int> low;    int time;    vector<vector<int> > ret;    void dfs(int node, int par, vector<int> graph[]) {       if (visited.count(node))       return;       visited.insert(node);       disc[node] = low[node] = time;       time++;       for (int x : graph[node]) {          if (x == par)          continue;          if (!visited.count(x)) {             dfs(x, node, graph);             low[node] = min(low[node], low[x]);             if (disc[node] < low[x]) {                ret.push_back({ node, x });             }          } else{             low[node] = min(low[node], disc[x]);          }       }    }    vector<vector<int> > criticalConnections(int n, vector<vector<int> >& v) {       disc.resize(n + 1);       low.resize(n + 1);       time = 0;       vector<int> graph[n + 1];       for (int i = 0; i < v.size(); i++) {          int u = v[i][0];          int w = v[i][1];          graph[u].push_back(w);          graph[w].push_back(u);       }       dfs(0, -1, graph);       return ret;    } }; main(){    Solution ob;    vector<vector<int>> v = {{0,1},{1,2},{2,0},{1,3}};    print_vector(ob.criticalConnections(4,v)); }  Input
4, {{0,1},{1,2},{2,0},{1,3}} Output
[[1, 3, ],]
