Code for How to Predict Stock Prices in Python using TensorFlow 2 and Keras Tutorial


View on Github

parameters.py

import os import time from tensorflow.keras.layers import LSTM # Window size or the sequence length N_STEPS = 50 # Lookup step, 1 is the next day LOOKUP_STEP = 15 # whether to scale feature columns & output price as well SCALE = True scale_str = f"sc-{int(SCALE)}" # whether to shuffle the dataset SHUFFLE = True shuffle_str = f"sh-{int(SHUFFLE)}" # whether to split the training/testing set by date SPLIT_BY_DATE = False split_by_date_str = f"sbd-{int(SPLIT_BY_DATE)}" # test ratio size, 0.2 is 20% TEST_SIZE = 0.2 # features to use FEATURE_COLUMNS = ["adjclose", "volume", "open", "high", "low"] # date now date_now = time.strftime("%Y-%m-%d") ### model parameters N_LAYERS = 2 # LSTM cell CELL = LSTM # 256 LSTM neurons UNITS = 256 # 40% dropout DROPOUT = 0.4 # whether to use bidirectional RNNs BIDIRECTIONAL = False ### training parameters # mean absolute error loss # LOSS = "mae" # huber loss LOSS = "huber_loss" OPTIMIZER = "adam" BATCH_SIZE = 64 EPOCHS = 500 # Amazon stock market ticker = "AMZN" ticker_data_filename = os.path.join("data", f"{ticker}_{date_now}.csv") # model name to save, making it as unique as possible based on parameters model_name = f"{date_now}_{ticker}-{shuffle_str}-{scale_str}-{split_by_date_str}-\ {LOSS}-{OPTIMIZER}-{CELL.__name__}-seq-{N_STEPS}-step-{LOOKUP_STEP}-layers-{N_LAYERS}-units-{UNITS}" if BIDIRECTIONAL: model_name += "-b"

stock_prediction.py

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout, Bidirectional from sklearn import preprocessing from sklearn.model_selection import train_test_split from yahoo_fin import stock_info as si from collections import deque import numpy as np import pandas as pd import random # set seed, so we can get the same results after rerunning several times np.random.seed(314) tf.random.set_seed(314) random.seed(314) def shuffle_in_unison(a, b): # shuffle two arrays in the same way state = np.random.get_state() np.random.shuffle(a) np.random.set_state(state) np.random.shuffle(b) def load_data(ticker, n_steps=50, scale=True, shuffle=True, lookup_step=1, split_by_date=True, test_size=0.2, feature_columns=['adjclose', 'volume', 'open', 'high', 'low']): """ Loads data from Yahoo Finance source, as well as scaling, shuffling, normalizing and splitting. Params: ticker (str/pd.DataFrame): the ticker you want to load, examples include AAPL, TESL, etc. n_steps (int): the historical sequence length (i.e window size) used to predict, default is 50 scale (bool): whether to scale prices from 0 to 1, default is True shuffle (bool): whether to shuffle the dataset (both training & testing), default is True lookup_step (int): the future lookup step to predict, default is 1 (e.g next day) split_by_date (bool): whether we split the dataset into training/testing by date, setting it to False will split datasets in a random way test_size (float): ratio for test data, default is 0.2 (20% testing data) feature_columns (list): the list of features to use to feed into the model, default is everything grabbed from yahoo_fin """ # see if ticker is already a loaded stock from yahoo finance if isinstance(ticker, str): # load it from yahoo_fin library df = si.get_data(ticker) elif isinstance(ticker, pd.DataFrame): # already loaded, use it directly df = ticker else: raise TypeError("ticker can be either a str or a `pd.DataFrame` instances") # this will contain all the elements we want to return from this function result = {} # we will also return the original dataframe itself result['df'] = df.copy() # make sure that the passed feature_columns exist in the dataframe for col in feature_columns: assert col in df.columns, f"'{col}' does not exist in the dataframe." # add date as a column if "date" not in df.columns: df["date"] = df.index if scale: column_scaler = {} # scale the data (prices) from 0 to 1 for column in feature_columns: scaler = preprocessing.MinMaxScaler() df[column] = scaler.fit_transform(np.expand_dims(df[column].values, axis=1)) column_scaler[column] = scaler # add the MinMaxScaler instances to the result returned result["column_scaler"] = column_scaler # add the target column (label) by shifting by `lookup_step` df['future'] = df['adjclose'].shift(-lookup_step) # last `lookup_step` columns contains NaN in future column # get them before droping NaNs last_sequence = np.array(df[feature_columns].tail(lookup_step)) # drop NaNs df.dropna(inplace=True) sequence_data = [] sequences = deque(maxlen=n_steps) for entry, target in zip(df[feature_columns + ["date"]].values, df['future'].values): sequences.append(entry) if len(sequences) == n_steps: sequence_data.append([np.array(sequences), target]) # get the last sequence by appending the last `n_step` sequence with `lookup_step` sequence # for instance, if n_steps=50 and lookup_step=10, last_sequence should be of 60 (that is 50+10) length # this last_sequence will be used to predict future stock prices that are not available in the dataset last_sequence = list([s[:len(feature_columns)] for s in sequences]) + list(last_sequence) last_sequence = np.array(last_sequence).astype(np.float32) # add to result result['last_sequence'] = last_sequence # construct the X's and y's X, y = [], [] for seq, target in sequence_data: X.append(seq) y.append(target) # convert to numpy arrays X = np.array(X) y = np.array(y) if split_by_date: # split the dataset into training & testing sets by date (not randomly splitting) train_samples = int((1 - test_size) * len(X)) result["X_train"] = X[:train_samples] result["y_train"] = y[:train_samples] result["X_test"] = X[train_samples:] result["y_test"] = y[train_samples:] if shuffle: # shuffle the datasets for training (if shuffle parameter is set) shuffle_in_unison(result["X_train"], result["y_train"]) shuffle_in_unison(result["X_test"], result["y_test"]) else: # split the dataset randomly result["X_train"], result["X_test"], result["y_train"], result["y_test"] = train_test_split(X, y, test_size=test_size, shuffle=shuffle) # get the list of test set dates dates = result["X_test"][:, -1, -1] # retrieve test features from the original dataframe result["test_df"] = result["df"].loc[dates] # remove duplicated dates in the testing dataframe result["test_df"] = result["test_df"][~result["test_df"].index.duplicated(keep='first')] # remove dates from the training/testing sets & convert to float32 result["X_train"] = result["X_train"][:, :, :len(feature_columns)].astype(np.float32) result["X_test"] = result["X_test"][:, :, :len(feature_columns)].astype(np.float32) return result def create_model(sequence_length, n_features, units=256, cell=LSTM, n_layers=2, dropout=0.3, loss="mean_absolute_error", optimizer="rmsprop", bidirectional=False): model = Sequential() for i in range(n_layers): if i == 0: # first layer if bidirectional: model.add(Bidirectional(cell(units, return_sequences=True), batch_input_shape=(None, sequence_length, n_features))) else: model.add(cell(units, return_sequences=True, batch_input_shape=(None, sequence_length, n_features))) elif i == n_layers - 1: # last layer if bidirectional: model.add(Bidirectional(cell(units, return_sequences=False))) else: model.add(cell(units, return_sequences=False)) else: # hidden layers if bidirectional: model.add(Bidirectional(cell(units, return_sequences=True))) else: model.add(cell(units, return_sequences=True)) # add dropout after each layer model.add(Dropout(dropout)) model.add(Dense(1, activation="linear")) model.compile(loss=loss, metrics=["mean_absolute_error"], optimizer=optimizer) return model

train.py

from stock_prediction import create_model, load_data from tensorflow.keras.layers import LSTM from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard import os import pandas as pd from parameters import * # create these folders if they does not exist if not os.path.isdir("results"): os.mkdir("results") if not os.path.isdir("logs"): os.mkdir("logs") if not os.path.isdir("data"): os.mkdir("data") # load the data data = load_data(ticker, N_STEPS, scale=SCALE, split_by_date=SPLIT_BY_DATE, shuffle=SHUFFLE, lookup_step=LOOKUP_STEP, test_size=TEST_SIZE, feature_columns=FEATURE_COLUMNS) # save the dataframe data["df"].to_csv(ticker_data_filename) # construct the model model = create_model(N_STEPS, len(FEATURE_COLUMNS), loss=LOSS, units=UNITS, cell=CELL, n_layers=N_LAYERS, dropout=DROPOUT, optimizer=OPTIMIZER, bidirectional=BIDIRECTIONAL) # some tensorflow callbacks checkpointer = ModelCheckpoint(os.path.join("results", model_name + ".h5"), save_weights_only=True, save_best_only=True, verbose=1) tensorboard = TensorBoard(log_dir=os.path.join("logs", model_name)) # train the model and save the weights whenever we see # a new optimal model using ModelCheckpoint history = model.fit(data["X_train"], data["y_train"], batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(data["X_test"], data["y_test"]), callbacks=[checkpointer, tensorboard], verbose=1)

test.py

import numpy as np import matplotlib.pyplot as plt from stock_prediction import create_model, load_data from parameters import * def plot_graph(test_df): """ This function plots true close price along with predicted close price with blue and red colors respectively """ plt.plot(test_df[f'true_adjclose_{LOOKUP_STEP}'], c='b') plt.plot(test_df[f'adjclose_{LOOKUP_STEP}'], c='r') plt.xlabel("Days") plt.ylabel("Price") plt.legend(["Actual Price", "Predicted Price"]) plt.show() def get_final_df(model, data): """ This function takes the `model` and `data` dict to construct a final dataframe that includes the features along with true and predicted prices of the testing dataset """ # if predicted future price is higher than the current, # then calculate the true future price minus the current price, to get the buy profit buy_profit = lambda current, pred_future, true_future: true_future - current if pred_future > current else 0 # if the predicted future price is lower than the current price, # then subtract the true future price from the current price sell_profit = lambda current, pred_future, true_future: current - true_future if pred_future < current else 0 X_test = data["X_test"] y_test = data["y_test"] # perform prediction and get prices y_pred = model.predict(X_test) if SCALE: y_test = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(np.expand_dims(y_test, axis=0))) y_pred = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(y_pred)) test_df = data["test_df"] # add predicted future prices to the dataframe test_df[f"adjclose_{LOOKUP_STEP}"] = y_pred # add true future prices to the dataframe test_df[f"true_adjclose_{LOOKUP_STEP}"] = y_test # sort the dataframe by date test_df.sort_index(inplace=True) final_df = test_df # add the buy profit column final_df["buy_profit"] = list(map(buy_profit, final_df["adjclose"], final_df[f"adjclose_{LOOKUP_STEP}"], final_df[f"true_adjclose_{LOOKUP_STEP}"]) # since we don't have profit for last sequence, add 0's ) # add the sell profit column final_df["sell_profit"] = list(map(sell_profit, final_df["adjclose"], final_df[f"adjclose_{LOOKUP_STEP}"], final_df[f"true_adjclose_{LOOKUP_STEP}"]) # since we don't have profit for last sequence, add 0's ) return final_df def predict(model, data): # retrieve the last sequence from data last_sequence = data["last_sequence"][-N_STEPS:] # expand dimension last_sequence = np.expand_dims(last_sequence, axis=0) # get the prediction (scaled from 0 to 1) prediction = model.predict(last_sequence) # get the price (by inverting the scaling) if SCALE: predicted_price = data["column_scaler"]["adjclose"].inverse_transform(prediction)[0][0] else: predicted_price = prediction[0][0] return predicted_price # load the data data = load_data(ticker, N_STEPS, scale=SCALE, split_by_date=SPLIT_BY_DATE, shuffle=SHUFFLE, lookup_step=LOOKUP_STEP, test_size=TEST_SIZE, feature_columns=FEATURE_COLUMNS) # construct the model model = create_model(N_STEPS, len(FEATURE_COLUMNS), loss=LOSS, units=UNITS, cell=CELL, n_layers=N_LAYERS, dropout=DROPOUT, optimizer=OPTIMIZER, bidirectional=BIDIRECTIONAL) # load optimal model weights from results folder model_path = os.path.join("results", model_name) + ".h5" model.load_weights(model_path) # evaluate the model loss, mae = model.evaluate(data["X_test"], data["y_test"], verbose=0) # calculate the mean absolute error (inverse scaling) if SCALE: mean_absolute_error = data["column_scaler"]["adjclose"].inverse_transform([[mae]])[0][0] else: mean_absolute_error = mae # get the final dataframe for the testing set final_df = get_final_df(model, data) # predict the future price future_price = predict(model, data) # we calculate the accuracy by counting the number of positive profits accuracy_score = (len(final_df[final_df['sell_profit'] > 0]) + len(final_df[final_df['buy_profit'] > 0])) / len(final_df) # calculating total buy & sell profit total_buy_profit = final_df["buy_profit"].sum() total_sell_profit = final_df["sell_profit"].sum() # total profit by adding sell & buy together total_profit = total_buy_profit + total_sell_profit # dividing total profit by number of testing samples (number of trades) profit_per_trade = total_profit / len(final_df) # printing metrics print(f"Future price after {LOOKUP_STEP} days is {future_price:.2f}$") print(f"{LOSS} loss:", loss) print("Mean Absolute Error:", mean_absolute_error) print("Accuracy score:", accuracy_score) print("Total buy profit:", total_buy_profit) print("Total sell profit:", total_sell_profit) print("Total profit:", total_profit) print("Profit per trade:", profit_per_trade) # plot true/pred prices graph plot_graph(final_df) print(final_df.tail(10)) # save the final dataframe to csv-results folder csv_results_folder = "csv-results" if not os.path.isdir(csv_results_folder): os.mkdir(csv_results_folder) csv_filename = os.path.join(csv_results_folder, model_name + ".csv") final_df.to_csv(csv_filename)

To run this:

pip3 install tensorflow sklearn matplotlib numpy pandas yahoo_fin

Edit parameters.py for your needs and run train.py. This will start training using the parameters you specified, you can use tensorboard on logs folder to visualize your training process.

Once you trained your model, use test.py to evaluate and test your model, good luck!