![]() |
Basic affine layer.
Inherits From: Layer
tfp.experimental.nn.Affine( input_size, output_size, kernel_initializer=None, bias_initializer=None, make_kernel_bias_fn=tfp.experimental.nn.util.make_kernel_bias
, dtype=tf.float32, batch_shape=(), activation_fn=None, name=None )
Args | |
---|---|
input_size | ... |
output_size | ... |
kernel_initializer | ... Default value: None (i.e., tfp.experimental.nn.initializers.glorot_uniform() ). |
bias_initializer | ... Default value: None (i.e., tf.initializers.zeros() ). |
make_kernel_bias_fn | ... Default value: tfp.experimental.nn.util.make_kernel_bias . |
dtype | ... Default value: tf.float32 . |
batch_shape | ... Default value: () . |
activation_fn | ... Default value: None . |
name | ... Default value: None (i.e., 'Affine' ). |
Attributes | |
---|---|
activation_fn | |
also_track | |
bias | |
dtype | |
kernel | |
name | Returns the name of this module as passed or determined in the ctor. |
name_scope | Returns a tf.name_scope instance for this class. |
non_trainable_variables | Sequence of non-trainable variables owned by this module and its submodules. |
submodules | Sequence of all sub-modules. Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).
|
trainable_variables | Sequence of trainable variables owned by this module and its submodules. |
validate_args | Python bool indicating possibly expensive checks are enabled. |
variables | Sequence of variables owned by this module and its submodules. |
Methods
load
load( filename )
save
save( filename )
summary
summary()
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variable
s and tf.Tensor
s whose names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method | The method to wrap. |
Returns | |
---|---|
The original method wrapped such that it enters the module's name scope. |
__call__
__call__( x )
Call self as a function.