Image Super Resolution using ESRGAN

View on TensorFlow.org Run in Google Colab View on GitHub Download notebook See TF Hub model

This colab demonstrates use of TensorFlow Hub Module for Enhanced Super Resolution Generative Adversarial Network (by Xintao Wang et.al.) [Paper] [Code]

for image enhancing. (Preferrably bicubically downsampled images).

Model trained on DIV2K Dataset (on bicubically downsampled images) on image patches of size 128 x 128.

Preparing Environment

import os import time from PIL import Image import numpy as np import tensorflow as tf import tensorflow_hub as hub import matplotlib.pyplot as plt os.environ["TFHUB_DOWNLOAD_PROGRESS"] = "True" 
wget "https://user-images.githubusercontent.com/12981474/40157448-eff91f06-5953-11e8-9a37-f6b5693fa03f.png" -O original.png
 --2024-03-09 12:57:57-- https://user-images.githubusercontent.com/12981474/40157448-eff91f06-5953-11e8-9a37-f6b5693fa03f.png Resolving user-images.githubusercontent.com (user-images.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... Connecting to user-images.githubusercontent.com (user-images.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 34146 (33K) [image/png] Saving to: ‘original.png’ original.png 100%[===================>] 33.35K --.-KB/s in 0.003s 2024-03-09 12:57:57 (9.94 MB/s) - ‘original.png’ saved [34146/34146] 
# Declaring Constants IMAGE_PATH = "original.png" SAVED_MODEL_PATH = "https://tfhub.dev/captain-pool/esrgan-tf2/1" 

Defining Helper Functions

def preprocess_image(image_path):  """ Loads image from path and preprocesses to make it model ready  Args:  image_path: Path to the image file  """ hr_image = tf.image.decode_image(tf.io.read_file(image_path)) # If PNG, remove the alpha channel. The model only supports # images with 3 color channels. if hr_image.shape[-1] == 4: hr_image = hr_image[...,:-1] hr_size = (tf.convert_to_tensor(hr_image.shape[:-1]) // 4) * 4 hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, hr_size[0], hr_size[1]) hr_image = tf.cast(hr_image, tf.float32) return tf.expand_dims(hr_image, 0) def save_image(image, filename):  """  Saves unscaled Tensor Images.  Args:  image: 3D image tensor. [height, width, channels]  filename: Name of the file to save.  """ if not isinstance(image, Image.Image): image = tf.clip_by_value(image, 0, 255) image = Image.fromarray(tf.cast(image, tf.uint8).numpy()) image.save("%s.jpg" % filename) print("Saved as %s.jpg" % filename) 
%matplotlib inline def plot_image(image, title=""):  """  Plots images from image tensors.  Args:  image: 3D image tensor. [height, width, channels].  title: Title to display in the plot.  """ image = np.asarray(image) image = tf.clip_by_value(image, 0, 255) image = Image.fromarray(tf.cast(image, tf.uint8).numpy()) plt.imshow(image) plt.axis("off") plt.title(title) 

Performing Super Resolution of images loaded from path

hr_image = preprocess_image(IMAGE_PATH) 
 2024-03-09 12:57:57.917967: E external/local_xla/xla/stream_executor/cuda/cuda_driver.cc:282] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 
# Plotting Original Resolution image plot_image(tf.squeeze(hr_image), title="Original Image") save_image(tf.squeeze(hr_image), filename="Original Image") 
 Saved as Original Image.jpg 

png

model = hub.load(SAVED_MODEL_PATH) 
 Downloaded https://tfhub.dev/captain-pool/esrgan-tf2/1, Total size: 20.60MB 
start = time.time() fake_image = model(hr_image) fake_image = tf.squeeze(fake_image) print("Time Taken: %f" % (time.time() - start)) 
 Time Taken: 1.146020 
# Plotting Super Resolution Image plot_image(tf.squeeze(fake_image), title="Super Resolution") save_image(tf.squeeze(fake_image), filename="Super Resolution") 
 Saved as Super Resolution.jpg 

png

Evaluating Performance of the Model

!wget "https://lh4.googleusercontent.com/-Anmw5df4gj0/AAAAAAAAAAI/AAAAAAAAAAc/6HxU8XFLnQE/photo.jpg64" -O test.jpg IMAGE_PATH = "test.jpg" 
 --2024-03-09 12:58:05-- https://lh4.googleusercontent.com/-Anmw5df4gj0/AAAAAAAAAAI/AAAAAAAAAAc/6HxU8XFLnQE/photo.jpg64 Resolving lh4.googleusercontent.com (lh4.googleusercontent.com)... 173.194.216.132, 2607:f8b0:400c:c10::84 Connecting to lh4.googleusercontent.com (lh4.googleusercontent.com)|173.194.216.132|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 84897 (83K) [image/jpeg] Saving to: ‘test.jpg’ test.jpg 100%[===================>] 82.91K --.-KB/s in 0.001s 2024-03-09 12:58:05 (92.9 MB/s) - ‘test.jpg’ saved [84897/84897] 
# Defining helper functions def downscale_image(image):  """  Scales down images using bicubic downsampling.  Args:  image: 3D or 4D tensor of preprocessed image  """ image_size = [] if len(image.shape) == 3: image_size = [image.shape[1], image.shape[0]] else: raise ValueError("Dimension mismatch. Can work only on single image.") image = tf.squeeze( tf.cast( tf.clip_by_value(image, 0, 255), tf.uint8)) lr_image = np.asarray( Image.fromarray(image.numpy()) .resize([image_size[0] // 4, image_size[1] // 4], Image.BICUBIC)) lr_image = tf.expand_dims(lr_image, 0) lr_image = tf.cast(lr_image, tf.float32) return lr_image 
hr_image = preprocess_image(IMAGE_PATH) 
lr_image = downscale_image(tf.squeeze(hr_image)) 
# Plotting Low Resolution Image plot_image(tf.squeeze(lr_image), title="Low Resolution") 

png

model = hub.load(SAVED_MODEL_PATH) 
start = time.time() fake_image = model(lr_image) fake_image = tf.squeeze(fake_image) print("Time Taken: %f" % (time.time() - start)) 
 Time Taken: 1.151733 
plot_image(tf.squeeze(fake_image), title="Super Resolution") # Calculating PSNR wrt Original Image psnr = tf.image.psnr( tf.clip_by_value(fake_image, 0, 255), tf.clip_by_value(hr_image, 0, 255), max_val=255) print("PSNR Achieved: %f" % psnr) 
 PSNR Achieved: 28.029171 

png

Comparing Outputs size by side.

plt.rcParams['figure.figsize'] = [15, 10] fig, axes = plt.subplots(1, 3) fig.tight_layout() plt.subplot(131) plot_image(tf.squeeze(hr_image), title="Original") plt.subplot(132) fig.tight_layout() plot_image(tf.squeeze(lr_image), "x4 Bicubic") plt.subplot(133) fig.tight_layout() plot_image(tf.squeeze(fake_image), "Super Resolution") plt.savefig("ESRGAN_DIV2K.jpg", bbox_inches="tight") print("PSNR: %f" % psnr) 
 PSNR: 28.029171 

png