View source on GitHub |
Describes a numpy array or scalar shape and dtype.
tf_agents.specs.ArraySpec( shape, dtype, name=None ) An ArraySpec allows an API to describe the arrays that it accepts or returns, before that array exists. The equivalent version describing a tf.Tensor is TensorSpec.
Raises | |
|---|---|
TypeError | If the shape is not an iterable or if the dtype is an invalid numpy dtype. |
Attributes | |
|---|---|
dtype | Returns a numpy dtype specifying the array dtype. |
name | Returns the name of the ArraySpec. |
shape | Returns a tuple specifying the array shape. |
Methods
check_array
check_array( array ) Return whether the given NumPy array conforms to the spec.
| Args | |
|---|---|
array | A NumPy array or a scalar. Tuples and lists will not be converted to a NumPy array automatically; they will cause this function to return false, even if a conversion to a conforming array is trivial. |
| Returns | |
|---|---|
| True if the array conforms to the spec, False otherwise. |
from_array
@staticmethodfrom_array( array, name=None )
Construct a spec from the given array or number.
from_spec
@staticmethodfrom_spec( spec )
Construct a spec from the given spec.
replace
replace( shape=None, dtype=None, name=None ) __eq__
__eq__( other ) Checks if the shape and dtype of two specs are equal.
__ne__
__ne__( other ) Return self!=value.
View source on GitHub