Automated testing for: ✓ terraform ✓ docker ✓ packer ✓ kubernetes ✓ and more Passed: 5. Failed: 0. Skipped: 0. Test run successful. How to test infrastructure code
The DevOps world is full of Fear
Fear of outages
Fear of security breaches
Fear of data loss
Fear of change
“Fear leads to anger. Anger leads to hate. Hate leads to suffering.” Scrum Master Yoda
And you all know what suffering leads to, right?
Credit: Daniele Polencic
Many DevOps teams deal with this fear in two ways:
1) Heavy drinking and smoking
2) Deploying less frequently
Sadly, both of these just make the problem worse!
There’s a better way to deal with this fear:
Automated tests
Automated tests give you the confidence to make changes
Fight fear with confidence
We know how to write automated tests for application code…
resource "aws_lambda_function" "web_app" { function_name = var.name role = aws_iam_role.lambda.arn # ... } resource "aws_api_gateway_integration" "proxy" { type = "AWS_PROXY" uri = aws_lambda_function.web_app.invoke_arn # ... } But how do you test your Terraform code deploys infrastructure that works?
apiVersion: apps/v1 kind: Deployment metadata: name: hello-world-app-deployment spec: selector: matchLabels: app: hello-world-app replicas: 1 spec: containers: - name: hello-world-app image: gruntwork-io/hello-world-app:v1 ports: - containerPort: 8080 How do you test your Kubernetes code configures your services correctly?
This talk is about how to write tests for your infrastructure code.
I’m Yevgeniy Brikman ybrikman.com
Co-founder of Gruntwork gruntwork.io
Author
1. Static analysis 2. Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
1. Static analysis 2. Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
Static analysis: test your code without deploying it.
Static analysis 1. Compiler / parser / interpreter 2. Linter 3. Dry run
Static analysis 1. Compiler / parser / interpreter 2. Linter 3. Dry run
Statically check your code for syntactic and structural issues
Tool Command Terraform terraform validate Packer packer validate <template> Kubernetes kubectl apply -f <file> --dry-run --validate=true Examples:
Static analysis 1. Compiler / parser / interpreter 2. Linter 3. Dry run
Statically validate your code to catch common errors
Tool Linters Terraform 1. conftest 2. terraform_validate 3. tflint Docker 1. dockerfile_lint 2. hadolint 3. dockerfilelint Kubernetes 1. kube-score 2. kube-lint 3. yamllint Examples:
Static analysis 1. Compiler / parser / interpreter 2. Linter 3. Dry run
Partially execute the code and validate the “plan”, but don’t actually deploy
Tool Dry run options Terraform 1. terraform plan 2. HashiCorp Sentinel 3. terraform-compliance Kubernetes kubectl apply -f <file> --server-dry-run Examples:
1. Static analysis 2. Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
Unit tests: test a single “unit” works in isolation.
Unit tests 1. Unit testing basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
Unit tests 1. Unit testing basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
You can’t “unit test” an entire end- to-end architecture
Instead, break your infra code into small modules and unit test those! module module module module module module module module module module module module module module module
With app code, you can test units in isolation from the outside world
resource "aws_lambda_function" "web_app" { function_name = var.name role = aws_iam_role.lambda.arn # ... } resource "aws_api_gateway_integration" "proxy" { type = "AWS_PROXY" uri = aws_lambda_function.web_app.invoke_arn # ... } But 99% of infrastructure code is about talking to the outside world…
resource "aws_lambda_function" "web_app" { function_name = var.name role = aws_iam_role.lambda.arn # ... } resource "aws_api_gateway_integration" "proxy" { type = "AWS_PROXY" uri = aws_lambda_function.web_app.invoke_arn # ... } If you try to isolate a unit from the outside world, you’re left with nothing!
So you can only test infra code by deploying to a real environment
Key takeaway: there’s no pure unit testing for infrastructure code.
Therefore, the test strategy is: 1. Deploy real infrastructure 2. Validate it works (e.g., via HTTP requests, API calls, SSH commands, etc.) 3. Undeploy the infrastructure (So it’s really integration testing of a single unit!)
Tool Deploy / Undeploy Validate Works with Terratest Yes Yes Terraform, Kubernetes, Packer, Docker, Servers, Cloud APIs, etc. kitchen-terraform Yes Yes Terraform Inspec No Yes Servers, Cloud APIs Serverspec No Yes Servers Goss No Yes Servers Tools that help with this strategy:
Tool Deploy / Undeploy Validate Works with Terratest Yes Yes Terraform, Kubernetes, Packer, Docker, Servers, Cloud APIs, etc. kitchen-terraform Yes Yes Terraform Inspec No Yes Servers, Cloud APIs Serverspec No Yes Servers Goss No Yes Servers In this talk, we’ll use Terratest:
Unit tests 1. Unit testing basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
Sample code for this talk is at: github.com/gruntwork-io/infrastructure-as-code-testing-talk
An example of a Terraform module you may want to test:
infrastructure-as-code-testing-talk └ examples └ hello-world-app └ main.tf └ outputs.tf └ variables.tf └ modules └ test └ README.md hello-world-app: deploy a “Hello, World” web service
resource "aws_lambda_function" "web_app" { function_name = var.name role = aws_iam_role.lambda.arn # ... } resource "aws_api_gateway_integration" "proxy" { type = "AWS_PROXY" uri = aws_lambda_function.web_app.invoke_arn # ... } Under the hood, this example runs on top of AWS Lambda & API Gateway
$ terraform apply Outputs: url = ruvvwv3sh1.execute-api.us-east-2.amazonaws.com $ curl ruvvwv3sh1.execute-api.us-east-2.amazonaws.com Hello, World! When you run terraform apply, it deploys and outputs the URL
Let’s write a unit test for hello-world-app with Terratest
infrastructure-as-code-testing-talk └ examples └ modules └ test └ hello_world_app_test.go └ README.md Create hello_world_app_test.go
func TestHelloWorldAppUnit(t *testing.T) { terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } The basic test structure
func TestHelloWorldAppUnit(t *testing.T) { terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } 1. Tell Terratest where your Terraform code lives
func TestHelloWorldAppUnit(t *testing.T) { terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } 2. Run terraform init and terraform apply to deploy your module
func TestHelloWorldAppUnit(t *testing.T) { terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } 3. Validate the infrastructure works. We’ll come back to this shortly.
func TestHelloWorldAppUnit(t *testing.T) { terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } 4. Run terraform destroy at the end of the test to undeploy everything
func validate(t *testing.T, opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } The validate function
func validate(t *testing.T, opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } 1. Run terraform output to get the web service URL
func validate(t *testing.T, opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } 2. Make HTTP requests to the URL
func validate(t *testing.T, opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } 3. Check the response for an expected status and body
func validate(t *testing.T, opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } 4. Retry the request up to 10 times, as deployment is asynchronous
Note: since we’re testing a web service, we use HTTP requests to validate it.
Infrastructure Example Validate with… Example Web service Dockerized web app HTTP requests Terratest http_helper package Server EC2 instance SSH commands Terratest ssh package Cloud service SQS Cloud APIs Terratest aws or gcp packages Database MySQL SQL queries MySQL driver for Go Examples of other ways to validate:
$ export AWS_ACCESS_KEY_ID=xxxx $ export AWS_SECRET_ACCESS_KEY=xxxxx To run the test, first authenticate to AWS
$ go test -v -timeout 15m -run TestHelloWorldAppUnit … --- PASS: TestHelloWorldAppUnit (31.57s) Then run go test. You now have a unit test you can run after every commit!
Unit tests 1. Unit testing basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
What about other tools, such as Docker + Kubernetes?
infrastructure-as-code-testing-talk └ examples └ hello-world-app └ docker-kubernetes └ Dockerfile └ deployment.yml └ modules └ test └ README.md docker-kubernetes: deploy a “Hello, World” web service to Kubernetes
FROM ubuntu:18.04 EXPOSE 8080 RUN DEBIAN_FRONTEND=noninteractive apt-get update && apt-get install -y busybox RUN echo 'Hello, World!' > index.html CMD ["busybox", "httpd", "-f", "-p", "8080"] Dockerfile: Dockerize a simple “Hello, World!” web service
apiVersion: apps/v1 kind: Deployment metadata: name: hello-world-app-deployment spec: selector: matchLabels: app: hello-world-app replicas: 1 spec: containers: - name: hello-world-app image: gruntwork-io/hello-world-app:v1 ports: - containerPort: 8080 deployment.yml: define how to deploy a Docker container in Kubernetes
$ cd examples/docker-kubernetes $ docker build -t gruntwork-io/hello-world-app:v1 . Successfully tagged gruntwork-io/hello-world-app:v1 $ kubectl apply -f deployment.yml deployment.apps/hello-world-app-deployment created service/hello-world-app-service created $ curl localhost:8080 Hello, World! Build the Docker image, deploy to Kubernetes, and check URL
Let’s write a unit test for this code.
infrastructure-as-code-testing-talk └ examples └ modules └ test └ hello_world_app_test.go └ docker_kubernetes_test.go └ README.md Create docker_kubernetes_test.go
func TestDockerKubernetes(t *testing.T) { buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } The basic test structure
func TestDockerKubernetes(t *testing.T) { buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 1. Build the Docker image. You’ll see the buildDockerImage method shortly.
func TestDockerKubernetes(t *testing.T) { buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 2. Tell Terratest where your Kubernetes deployment is defined
func TestDockerKubernetes(t *testing.T) { buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 3. Configure kubectl options to authenticate to Kubernetes
func TestDockerKubernetes(t *testing.T) { buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 4. Run kubectl apply to deploy the web app to Kubernetes
func TestDockerKubernetes(t *testing.T) { buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 5. Check the app is working. You’ll see the validate method shortly.
func TestDockerKubernetes(t *testing.T) { buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 6. At the end of the test, remove all Kubernetes resources you deployed
func buildDockerImage(t *testing.T) { options := &docker.BuildOptions{ Tags: []string{"gruntwork-io/hello-world-app:v1"}, } path := "../examples/docker-kubernetes" docker.Build(t, path, options) } The buildDockerImage method
func validate(t *testing.T, opts *k8s.KubectlOptions) { k8s.WaitUntilServiceAvailable(t, opts, "hello-world- app-service", 10, 1*time.Second) http_helper.HttpGetWithRetry(t, serviceUrl(t, opts), // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3*time.Second // Time between retries ) } The validate method
func validate(t *testing.T, opts *k8s.KubectlOptions) { k8s.WaitUntilServiceAvailable(t, opts, "hello-world- app-service", 10, 1*time.Second) http_helper.HttpGetWithRetry(t, serviceUrl(t, opts), // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3*time.Second // Time between retries ) } 1. Wait until the service is deployed
func validate(t *testing.T, opts *k8s.KubectlOptions) { k8s.WaitUntilServiceAvailable(t, opts, "hello-world- app-service", 10, 1*time.Second) http_helper.HttpGetWithRetry(t, serviceUrl(t, opts), // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3*time.Second // Time between retries ) } 2. Make HTTP requests
func validate(t *testing.T, opts *k8s.KubectlOptions) { k8s.WaitUntilServiceAvailable(t, opts, "hello-world- app-service", 10, 1*time.Second) http_helper.HttpGetWithRetry(t, serviceUrl(t, opts), // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3*time.Second // Time between retries ) } 3. Use serviceUrl method to get URL
func serviceUrl(t *testing.T, opts *k8s.KubectlOptions) string { service := k8s.GetService(t, options, "hello-world-app-service") endpoint := k8s.GetServiceEndpoint(t, options, service, 8080) return fmt.Sprintf("http://%s", endpoint) } The serviceUrl method
$ kubectl config set-credentials … To run the test, first authenticate to a Kubernetes cluster.
Note: Kubernetes is now part of Docker Desktop. Test 100% locally!
$ go test -v -timeout 15m -run TestDockerKubernetes … --- PASS: TestDockerKubernetes (5.69s) Run go test. You can validate your config after every commit in seconds!
Unit tests 1. Unit testing basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
Note: tests create and destroy many resources!
Pro tip #1: run tests in completely separate “sandbox” accounts
Tool Clouds Features cloud-nuke AWS (GCP planned) Delete all resources older than a certain date; in a certain region; of a certain type. Janitor Monkey AWS Configurable rules of what to delete. Notify owners of pending deletions. aws-nuke AWS Specify specific AWS accounts and resource types to target. Azure Powershell Azure Includes native commands to delete Resource Groups Pro tip #2: run these tools in cron jobs to clean up left-over resources
1. Static analysis 2. Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
Integration tests: test multiple “units” work together.
Integration tests 1. Example: Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
Integration tests 1. Example: Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
infrastructure-as-code-testing-talk └ examples └ hello-world-app └ docker-kubernetes └ proxy-app └ web-service └ modules └ test └ README.md Let’s say you have two Terraform modules you want to test together:
infrastructure-as-code-testing-talk └ examples └ hello-world-app └ docker-kubernetes └ proxy-app └ web-service └ modules └ test └ README.md proxy-app: an app that acts as an HTTP proxy for other web services.
infrastructure-as-code-testing-talk └ examples └ hello-world-app └ docker-kubernetes └ proxy-app └ web-service └ modules └ test └ README.md web-service: a web service that you want proxied.
variable "url_to_proxy" { description = "The URL to proxy." type = string } proxy-app takes in the URL to proxy via an input variable
output "url" { value = module.web_service.url } web-service exposes its URL via an output variable
infrastructure-as-code-testing-talk └ examples └ modules └ test └ hello_world_app_test.go └ docker_kubernetes_test.go └ proxy_app_test.go └ README.md Create proxy_app_test.go
func TestProxyApp(t *testing.T) { webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } The basic test structure
func TestProxyApp(t *testing.T) { webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 1. Configure options for the web service
func TestProxyApp(t *testing.T) { webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 2. Deploy the web service
func TestProxyApp(t *testing.T) { webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 3. Configure options for the proxy app (passing it the web service options)
func TestProxyApp(t *testing.T) { webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 4. Deploy the proxy app
func TestProxyApp(t *testing.T) { webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 5. Validate the proxy app works
func TestProxyApp(t *testing.T) { webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 6. At the end of the test, undeploy the proxy app and the web service
func configWebService(t *testing.T) *terraform.Options { return &terraform.Options{ TerraformDir: "../examples/web-service", } } The configWebService method
func configProxyApp(t *testing.T, webServiceOpts *terraform.Options) *terraform.Options { url := terraform.Output(t, webServiceOpts, "url") return &terraform.Options{ TerraformDir: "../examples/proxy-app", Vars: map[string]interface{}{ "url_to_proxy": url, }, } } The configProxyApp method
func configProxyApp(t *testing.T, webServiceOpts *terraform.Options) *terraform.Options { url := terraform.Output(t, webServiceOpts, "url") return &terraform.Options{ TerraformDir: "../examples/proxy-app", Vars: map[string]interface{}{ "url_to_proxy": url, }, } } 1. Read the url output from the web- service module
func configProxyApp(t *testing.T, webServiceOpts *terraform.Options) *terraform.Options { url := terraform.Output(t, webServiceOpts, "url") return &terraform.Options{ TerraformDir: "../examples/proxy-app", Vars: map[string]interface{}{ "url_to_proxy": url, }, } } 2. Pass it in as the url_to_proxy input to the proxy-app module
func validate(t *testing.T, opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code `{"text":"Hello, World!"}`, // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } The validate method
$ go test -v -timeout 15m -run TestProxyApp … --- PASS: TestProxyApp (182.44s) Run go test. You’re now testing multiple modules together!
$ go test -v -timeout 15m -run TestProxyApp … --- PASS: TestProxyApp (182.44s) But integration tests can take (many) minutes to run…
Integration tests 1. Example: Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
Infrastructure tests can take a long time to run
One way to save time: run tests in parallel
func TestProxyApp(t *testing.T) { t.Parallel() // The rest of the test code } func TestHelloWorldAppUnit(t *testing.T) { t.Parallel() // The rest of the test code } Enable test parallelism in Go by adding t.Parallel() as the 1st line of each test.
$ go test -v -timeout 15m === RUN TestHelloWorldApp === RUN TestDockerKubernetes === RUN TestProxyApp Now, if you run go test, all the tests with t.Parallel() will run in parallel
But there’s a gotcha: resource conflicts
resource "aws_iam_role" "role_example" { name = "example-iam-role" } resource "aws_security_group" "sg_example" { name = "security-group-example" } Example: module with hard-coded IAM Role and Security Group names
resource "aws_iam_role" "role_example" { name = "example-iam-role" } resource "aws_security_group" "sg_example" { name = "security-group-example" } If two tests tried to deploy this module in parallel, the names would conflict!
Key takeaway: you must namespace all your resources
resource "aws_iam_role" "role_example" { name = var.name } resource "aws_security_group" "sg_example" { name = var.name } Example: use variables in all resource names…
uniqueId := random.UniqueId() return &terraform.Options{ TerraformDir: "../examples/proxy-app", Vars: map[string]interface{}{ "name": fmt.Sprintf("text-proxy-app-%s", uniqueId) }, } At test time, set the variables to a randomized value to avoid conflicts
Integration tests 1. Example: Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
Consider the structure of the proxy-app integration test:
1. Deploy web-service 2. Deploy proxy-app 3. Validate proxy-app 4. Undeploy proxy-app 5. Undeploy web-service
1. Deploy web-service 2. Deploy proxy-app 3. Validate proxy-app 4. Undeploy proxy-app 5. Undeploy web-service When iterating locally, you sometimes want to re-run just one of these steps.
1. Deploy web-service 2. Deploy proxy-app 3. Validate proxy-app 4. Undeploy proxy-app 5. Undeploy web-service But as the code is written now, you have to run all steps on each test run.
1. Deploy web-service 2. Deploy proxy-app 3. Validate proxy-app 4. Undeploy proxy-app 5. Undeploy web-service And that can add up to a lot of overhead. (~3 min) (~2 min) (~30 seconds) (~1 min) (~2 min)
Key takeaway: break your tests into independent test stages
webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) The original test structure
stage := test_structure.RunTestStage defer stage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) The test structure with test stages
stage := test_structure.RunTestStage defer stage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) 1. RunTestStage is a helper function from Terratest.
stage := test_structure.RunTestStage defer stage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) 2. Wrap each stage of your test with a call to RunTestStage
stage := test_structure.RunTestStage defer stage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) 3. Define each stage in a function (you’ll see this code shortly).
stage := test_structure.RunTestStage defer stage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) 4. Give each stage a unique name
stage := test_structure.RunTestStage defer stage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) Any stage foo can be skipped by setting the env var SKIP_foo=true
$ SKIP_cleanup_web_service=true $ SKIP_cleanup_proxy_app=true Example: on the very first test run, skip the cleanup stages.
$ go test -v -timeout 15m -run TestProxyApp Running stage 'deploy_web_service'… Running stage 'deploy_proxy_app'… Running stage 'validate'… Skipping stage 'cleanup_proxy_app'… Skipping stage 'cleanup_web_service'… --- PASS: TestProxyApp (105.73s) That way, after the test finishes, the infrastructure will still be running.
$ SKIP_deploy_web_service=true $ SKIP_deploy_proxy_app=true Now, on the next several test runs, you can skip the deploy stages too.
$ go test -v -timeout 15m -run TestProxyApp Skipping stage 'deploy_web_service’… Skipping stage 'deploy_proxy_app'… Running stage 'validate'… Skipping stage 'cleanup_proxy_app'… Skipping stage 'cleanup_web_service'… --- PASS: TestProxyApp (14.22s) This allows you to iterate on solely the validate stage…
$ go test -v -timeout 15m -run TestProxyApp Skipping stage 'deploy_web_service’… Skipping stage 'deploy_proxy_app'… Running stage 'validate'… Skipping stage 'cleanup_proxy_app'… Skipping stage 'cleanup_web_service'… --- PASS: TestProxyApp (14.22s) Which dramatically speeds up your iteration / feedback cycle!
$ SKIP_validate=true $ unset SKIP_cleanup_web_service $ unset SKIP_cleanup_proxy_app When you’re done iterating, skip validate and re-enable cleanup
$ go test -v -timeout 15m -run TestProxyApp Skipping stage 'deploy_web_service’… Skipping stage 'deploy_proxy_app’… Skipping stage 'validate’… Running stage 'cleanup_proxy_app’… Running stage 'cleanup_web_service'… --- PASS: TestProxyApp (59.61s) This cleans up everything that was left running.
func deployWebService(t *testing.T) { opts := configWebServiceOpts(t) test_structure.SaveTerraformOptions(t, "/tmp", opts) terraform.InitAndApply(t, opts) } func cleanupWebService(t *testing.T) { opts := test_structure.LoadTerraformOptions(t, "/tmp") terraform.Destroy(t, opts) } Note: each time you run test stages via go test, it’s a separate OS process.
func deployWebService(t *testing.T) { opts := configWebServiceOpts(t) test_structure.SaveTerraformOptions(t, "/tmp", opts) terraform.InitAndApply(t, opts) } func cleanupWebService(t *testing.T) { opts := test_structure.LoadTerraformOptions(t, "/tmp") terraform.Destroy(t, opts) } So to pass data between stages, one stage needs to write the data to disk…
func deployWebService(t *testing.T) { opts := configWebServiceOpts(t) test_structure.SaveTerraformOptions(t, "/tmp", opts) terraform.InitAndApply(t, opts) } func cleanupWebService(t *testing.T) { opts := test_structure.LoadTerraformOptions(t, "/tmp") terraform.Destroy(t, opts) } And the other stages need to read that data from disk.
Integration tests 1. Example: Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
Real infrastructure can fail for intermittent reasons (e.g., bad EC2 instance, Apt downtime, Terraform bug)
To avoid “flaky” tests, add retries for known errors.
&terraform.Options{ TerraformDir: "../examples/proxy-app", RetryableTerraformErrors: map[string]string{ "net/http: TLS handshake timeout": "Terraform bug", }, MaxRetries: 3, TimeBetweenRetries: 3*time.Second, } Example: retry up to 3 times on a known TLS error in Terraform.
1. Static analysis 2. Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
End-to-end tests: test your entire infrastructure works together.
How do you test this entire thing?
You could use the same strategy… 1. Deploy all the infrastructure 2. Validate it works (e.g., via HTTP requests, API calls, SSH commands, etc.) 3. Undeploy all the infrastructure
But it’s rare to write end-to- end tests this way. Here’s why:
e2e Tests Test pyramid Integration Tests Unit Tests Static analysis
e2e Tests Integration Tests Unit Tests Static analysis Cost, brittleness, run time
e2e Tests Integration Tests Unit Tests Static analysis 60 – 240+ minutes 5 – 60 minutes 1 – 20 minutes 1 – 60 seconds
e2e Tests Integration Tests Unit Tests Static analysis E2E tests are too slow to be useful 60 – 240+ minutes 5 – 60 minutes 1 – 20 minutes 1 – 60 seconds
Another problem with E2E tests: brittleness.
Let’s do some math:
Assume a single resource (e.g., EC2 instance) has a 1/1000 (0.1%) chance of failure.
Test type # of resources Chance of failure Unit tests 10 1% Integration tests 50 5% End-to-end tests 500+ 40%+ The more resources your tests deploy, the flakier they will be.
Test type # of resources Chance of failure Unit tests 10 1% Integration tests 50 5% End-to-end tests 500+ 40%+ You can work around the failure rate for unit & integration tests with retries
Test type # of resources Chance of failure Unit tests 10 1% Integration tests 50 5% End-to-end tests 500+ 40%+ You can work around the failure rate for unit & integration tests with retries
Key takeaway: E2E tests from scratch are too slow and too brittle to be useful
Instead, you can do incremental E2E testing!
module module module module module module module module module module module module module module module 1. Deploy a persistent test environment and leave it running.
module module module module module module module module module module module module module module module 2. Each time you update a module, deploy & validate just that module
module module module module module module module module module module module module module module module 3. Bonus: test your deployment process is zero-downtime too!
1. Static analysis 2. Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
Testing techniques compared:
Technique Strengths Weaknesses Static analysis 1. Fast 2. Stable 3. No need to deploy real resources 4. Easy to use 1. Very limited in errors you can catch 2. You don’t get much confidence in your code solely from static analysis Unit tests 1. Fast enough (1 – 10 min) 2. Mostly stable (with retry logic) 3. High level of confidence in individual units 1. Need to deploy real resources 2. Requires writing non-trivial code Integration tests 1. Mostly stable (with retry logic) 2. High level of confidence in multiple units working together 1. Need to deploy real resources 2. Requires writing non-trivial code 3. Slow (10 – 30 min) End-to-end tests 1. Build confidence in your entire architecture 1. Need to deploy real resources 2. Requires writing non-trivial code 3. Very slow (60 min – 240+ min)* 4. Can be brittle (even with retry logic)*
So which should you use?
All of them! They all catch different types of bugs.
e2e Tests Keep in mind the test pyramid Integration Tests Unit Tests Static analysis
e2e Tests Lots of unit tests + static analysis Integration Tests Unit Tests Static analysis
e2e Tests Fewer integration tests Integration Tests Unit Tests Static analysis
e2e Tests A handful of high-value e2e tests Integration Tests Unit Tests Static analysis
Infrastructure code without tests is scary
Fight the fear & build confidence in your code with automated tests
Questions? info@gruntwork.io

How to test infrastructure code: automated testing for Terraform, Kubernetes, Docker, Packer and more

  • 1.
    Automated testing for: ✓terraform ✓ docker ✓ packer ✓ kubernetes ✓ and more Passed: 5. Failed: 0. Skipped: 0. Test run successful. How to test infrastructure code
  • 2.
    The DevOps worldis full of Fear
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
    “Fear leads to anger.Anger leads to hate. Hate leads to suffering.” Scrum Master Yoda
  • 8.
    And you allknow what suffering leads to, right?
  • 10.
  • 13.
    Many DevOps teamsdeal with this fear in two ways:
  • 14.
    1) Heavy drinkingand smoking
  • 15.
  • 16.
    Sadly, both ofthese just make the problem worse!
  • 18.
    There’s a betterway to deal with this fear:
  • 19.
  • 20.
    Automated tests giveyou the confidence to make changes
  • 21.
    Fight fear withconfidence
  • 22.
    We know howto write automated tests for application code…
  • 23.
    resource "aws_lambda_function" "web_app"{ function_name = var.name role = aws_iam_role.lambda.arn # ... } resource "aws_api_gateway_integration" "proxy" { type = "AWS_PROXY" uri = aws_lambda_function.web_app.invoke_arn # ... } But how do you test your Terraform code deploys infrastructure that works?
  • 24.
    apiVersion: apps/v1 kind: Deployment metadata: name:hello-world-app-deployment spec: selector: matchLabels: app: hello-world-app replicas: 1 spec: containers: - name: hello-world-app image: gruntwork-io/hello-world-app:v1 ports: - containerPort: 8080 How do you test your Kubernetes code configures your services correctly?
  • 25.
    This talk isabout how to write tests for your infrastructure code.
  • 26.
  • 27.
  • 28.
  • 29.
    1. Static analysis 2.Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
  • 30.
    1. Static analysis 2.Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
  • 31.
    Static analysis: testyour code without deploying it.
  • 32.
    Static analysis 1. Compiler/ parser / interpreter 2. Linter 3. Dry run
  • 33.
    Static analysis 1. Compiler/ parser / interpreter 2. Linter 3. Dry run
  • 34.
    Statically check yourcode for syntactic and structural issues
  • 35.
    Tool Command Terraform terraformvalidate Packer packer validate <template> Kubernetes kubectl apply -f <file> --dry-run --validate=true Examples:
  • 36.
    Static analysis 1. Compiler/ parser / interpreter 2. Linter 3. Dry run
  • 37.
    Statically validate yourcode to catch common errors
  • 38.
    Tool Linters Terraform 1. conftest 2.terraform_validate 3. tflint Docker 1. dockerfile_lint 2. hadolint 3. dockerfilelint Kubernetes 1. kube-score 2. kube-lint 3. yamllint Examples:
  • 39.
    Static analysis 1. Compiler/ parser / interpreter 2. Linter 3. Dry run
  • 40.
    Partially execute thecode and validate the “plan”, but don’t actually deploy
  • 41.
    Tool Dry runoptions Terraform 1. terraform plan 2. HashiCorp Sentinel 3. terraform-compliance Kubernetes kubectl apply -f <file> --server-dry-run Examples:
  • 42.
    1. Static analysis 2.Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
  • 43.
    Unit tests: testa single “unit” works in isolation.
  • 44.
    Unit tests 1. Unittesting basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
  • 45.
    Unit tests 1. Unittesting basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
  • 46.
    You can’t “unittest” an entire end- to-end architecture
  • 47.
    Instead, break yourinfra code into small modules and unit test those! module module module module module module module module module module module module module module module
  • 48.
    With app code,you can test units in isolation from the outside world
  • 49.
    resource "aws_lambda_function" "web_app"{ function_name = var.name role = aws_iam_role.lambda.arn # ... } resource "aws_api_gateway_integration" "proxy" { type = "AWS_PROXY" uri = aws_lambda_function.web_app.invoke_arn # ... } But 99% of infrastructure code is about talking to the outside world…
  • 50.
    resource "aws_lambda_function" "web_app"{ function_name = var.name role = aws_iam_role.lambda.arn # ... } resource "aws_api_gateway_integration" "proxy" { type = "AWS_PROXY" uri = aws_lambda_function.web_app.invoke_arn # ... } If you try to isolate a unit from the outside world, you’re left with nothing!
  • 51.
    So you canonly test infra code by deploying to a real environment
  • 52.
    Key takeaway: there’sno pure unit testing for infrastructure code.
  • 53.
    Therefore, the teststrategy is: 1. Deploy real infrastructure 2. Validate it works (e.g., via HTTP requests, API calls, SSH commands, etc.) 3. Undeploy the infrastructure (So it’s really integration testing of a single unit!)
  • 54.
    Tool Deploy / Undeploy Validate Workswith Terratest Yes Yes Terraform, Kubernetes, Packer, Docker, Servers, Cloud APIs, etc. kitchen-terraform Yes Yes Terraform Inspec No Yes Servers, Cloud APIs Serverspec No Yes Servers Goss No Yes Servers Tools that help with this strategy:
  • 55.
    Tool Deploy / Undeploy Validate Workswith Terratest Yes Yes Terraform, Kubernetes, Packer, Docker, Servers, Cloud APIs, etc. kitchen-terraform Yes Yes Terraform Inspec No Yes Servers, Cloud APIs Serverspec No Yes Servers Goss No Yes Servers In this talk, we’ll use Terratest:
  • 56.
    Unit tests 1. Unittesting basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
  • 57.
    Sample code forthis talk is at: github.com/gruntwork-io/infrastructure-as-code-testing-talk
  • 58.
    An example ofa Terraform module you may want to test:
  • 59.
    infrastructure-as-code-testing-talk └ examples └ hello-world-app └main.tf └ outputs.tf └ variables.tf └ modules └ test └ README.md hello-world-app: deploy a “Hello, World” web service
  • 60.
    resource "aws_lambda_function" "web_app"{ function_name = var.name role = aws_iam_role.lambda.arn # ... } resource "aws_api_gateway_integration" "proxy" { type = "AWS_PROXY" uri = aws_lambda_function.web_app.invoke_arn # ... } Under the hood, this example runs on top of AWS Lambda & API Gateway
  • 61.
    $ terraform apply Outputs: url= ruvvwv3sh1.execute-api.us-east-2.amazonaws.com $ curl ruvvwv3sh1.execute-api.us-east-2.amazonaws.com Hello, World! When you run terraform apply, it deploys and outputs the URL
  • 62.
    Let’s write aunit test for hello-world-app with Terratest
  • 63.
    infrastructure-as-code-testing-talk └ examples └ modules └test └ hello_world_app_test.go └ README.md Create hello_world_app_test.go
  • 64.
    func TestHelloWorldAppUnit(t *testing.T){ terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } The basic test structure
  • 65.
    func TestHelloWorldAppUnit(t *testing.T){ terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } 1. Tell Terratest where your Terraform code lives
  • 66.
    func TestHelloWorldAppUnit(t *testing.T){ terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } 2. Run terraform init and terraform apply to deploy your module
  • 67.
    func TestHelloWorldAppUnit(t *testing.T){ terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } 3. Validate the infrastructure works. We’ll come back to this shortly.
  • 68.
    func TestHelloWorldAppUnit(t *testing.T){ terraformOptions := &terraform.Options{ TerraformDir: "../examples/hello-world-app", } defer terraform.Destroy(t, terraformOptions) terraform.InitAndApply(t, terraformOptions) validate(t, terraformOptions) } 4. Run terraform destroy at the end of the test to undeploy everything
  • 69.
    func validate(t *testing.T,opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } The validate function
  • 70.
    func validate(t *testing.T,opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } 1. Run terraform output to get the web service URL
  • 71.
    func validate(t *testing.T,opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } 2. Make HTTP requests to the URL
  • 72.
    func validate(t *testing.T,opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } 3. Check the response for an expected status and body
  • 73.
    func validate(t *testing.T,opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } 4. Retry the request up to 10 times, as deployment is asynchronous
  • 74.
    Note: since we’retesting a web service, we use HTTP requests to validate it.
  • 75.
    Infrastructure Example Validatewith… Example Web service Dockerized web app HTTP requests Terratest http_helper package Server EC2 instance SSH commands Terratest ssh package Cloud service SQS Cloud APIs Terratest aws or gcp packages Database MySQL SQL queries MySQL driver for Go Examples of other ways to validate:
  • 76.
    $ export AWS_ACCESS_KEY_ID=xxxx $export AWS_SECRET_ACCESS_KEY=xxxxx To run the test, first authenticate to AWS
  • 77.
    $ go test-v -timeout 15m -run TestHelloWorldAppUnit … --- PASS: TestHelloWorldAppUnit (31.57s) Then run go test. You now have a unit test you can run after every commit!
  • 78.
    Unit tests 1. Unittesting basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
  • 79.
    What about othertools, such as Docker + Kubernetes?
  • 80.
    infrastructure-as-code-testing-talk └ examples └ hello-world-app └docker-kubernetes └ Dockerfile └ deployment.yml └ modules └ test └ README.md docker-kubernetes: deploy a “Hello, World” web service to Kubernetes
  • 81.
    FROM ubuntu:18.04 EXPOSE 8080 RUNDEBIAN_FRONTEND=noninteractive apt-get update && apt-get install -y busybox RUN echo 'Hello, World!' > index.html CMD ["busybox", "httpd", "-f", "-p", "8080"] Dockerfile: Dockerize a simple “Hello, World!” web service
  • 82.
    apiVersion: apps/v1 kind: Deployment metadata: name:hello-world-app-deployment spec: selector: matchLabels: app: hello-world-app replicas: 1 spec: containers: - name: hello-world-app image: gruntwork-io/hello-world-app:v1 ports: - containerPort: 8080 deployment.yml: define how to deploy a Docker container in Kubernetes
  • 83.
    $ cd examples/docker-kubernetes $docker build -t gruntwork-io/hello-world-app:v1 . Successfully tagged gruntwork-io/hello-world-app:v1 $ kubectl apply -f deployment.yml deployment.apps/hello-world-app-deployment created service/hello-world-app-service created $ curl localhost:8080 Hello, World! Build the Docker image, deploy to Kubernetes, and check URL
  • 84.
    Let’s write aunit test for this code.
  • 85.
    infrastructure-as-code-testing-talk └ examples └ modules └test └ hello_world_app_test.go └ docker_kubernetes_test.go └ README.md Create docker_kubernetes_test.go
  • 86.
    func TestDockerKubernetes(t *testing.T){ buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } The basic test structure
  • 87.
    func TestDockerKubernetes(t *testing.T){ buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 1. Build the Docker image. You’ll see the buildDockerImage method shortly.
  • 88.
    func TestDockerKubernetes(t *testing.T){ buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 2. Tell Terratest where your Kubernetes deployment is defined
  • 89.
    func TestDockerKubernetes(t *testing.T){ buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 3. Configure kubectl options to authenticate to Kubernetes
  • 90.
    func TestDockerKubernetes(t *testing.T){ buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 4. Run kubectl apply to deploy the web app to Kubernetes
  • 91.
    func TestDockerKubernetes(t *testing.T){ buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 5. Check the app is working. You’ll see the validate method shortly.
  • 92.
    func TestDockerKubernetes(t *testing.T){ buildDockerImage(t) path := "../examples/docker-kubernetes/deployment.yml" options := k8s.NewKubectlOptions("", "", "") defer k8s.KubectlDelete(t, options, path) k8s.KubectlApply(t, options, path) validate(t, options) } 6. At the end of the test, remove all Kubernetes resources you deployed
  • 93.
    func buildDockerImage(t *testing.T){ options := &docker.BuildOptions{ Tags: []string{"gruntwork-io/hello-world-app:v1"}, } path := "../examples/docker-kubernetes" docker.Build(t, path, options) } The buildDockerImage method
  • 94.
    func validate(t *testing.T,opts *k8s.KubectlOptions) { k8s.WaitUntilServiceAvailable(t, opts, "hello-world- app-service", 10, 1*time.Second) http_helper.HttpGetWithRetry(t, serviceUrl(t, opts), // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3*time.Second // Time between retries ) } The validate method
  • 95.
    func validate(t *testing.T,opts *k8s.KubectlOptions) { k8s.WaitUntilServiceAvailable(t, opts, "hello-world- app-service", 10, 1*time.Second) http_helper.HttpGetWithRetry(t, serviceUrl(t, opts), // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3*time.Second // Time between retries ) } 1. Wait until the service is deployed
  • 96.
    func validate(t *testing.T,opts *k8s.KubectlOptions) { k8s.WaitUntilServiceAvailable(t, opts, "hello-world- app-service", 10, 1*time.Second) http_helper.HttpGetWithRetry(t, serviceUrl(t, opts), // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3*time.Second // Time between retries ) } 2. Make HTTP requests
  • 97.
    func validate(t *testing.T,opts *k8s.KubectlOptions) { k8s.WaitUntilServiceAvailable(t, opts, "hello-world- app-service", 10, 1*time.Second) http_helper.HttpGetWithRetry(t, serviceUrl(t, opts), // URL to test 200, // Expected status code "Hello, World!", // Expected body 10, // Max retries 3*time.Second // Time between retries ) } 3. Use serviceUrl method to get URL
  • 98.
    func serviceUrl(t *testing.T,opts *k8s.KubectlOptions) string { service := k8s.GetService(t, options, "hello-world-app-service") endpoint := k8s.GetServiceEndpoint(t, options, service, 8080) return fmt.Sprintf("http://%s", endpoint) } The serviceUrl method
  • 99.
    $ kubectl configset-credentials … To run the test, first authenticate to a Kubernetes cluster.
  • 100.
    Note: Kubernetes isnow part of Docker Desktop. Test 100% locally!
  • 101.
    $ go test-v -timeout 15m -run TestDockerKubernetes … --- PASS: TestDockerKubernetes (5.69s) Run go test. You can validate your config after every commit in seconds!
  • 102.
    Unit tests 1. Unittesting basics 2. Example: Terraform unit tests 3. Example: Docker/Kubernetes unit tests 4. Cleaning up after tests
  • 103.
    Note: tests createand destroy many resources!
  • 104.
    Pro tip #1:run tests in completely separate “sandbox” accounts
  • 105.
    Tool Clouds Features cloud-nukeAWS (GCP planned) Delete all resources older than a certain date; in a certain region; of a certain type. Janitor Monkey AWS Configurable rules of what to delete. Notify owners of pending deletions. aws-nuke AWS Specify specific AWS accounts and resource types to target. Azure Powershell Azure Includes native commands to delete Resource Groups Pro tip #2: run these tools in cron jobs to clean up left-over resources
  • 106.
    1. Static analysis 2.Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
  • 107.
    Integration tests: testmultiple “units” work together.
  • 108.
    Integration tests 1. Example:Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
  • 109.
    Integration tests 1. Example:Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
  • 110.
    infrastructure-as-code-testing-talk └ examples └ hello-world-app └docker-kubernetes └ proxy-app └ web-service └ modules └ test └ README.md Let’s say you have two Terraform modules you want to test together:
  • 111.
    infrastructure-as-code-testing-talk └ examples └ hello-world-app └docker-kubernetes └ proxy-app └ web-service └ modules └ test └ README.md proxy-app: an app that acts as an HTTP proxy for other web services.
  • 112.
    infrastructure-as-code-testing-talk └ examples └ hello-world-app └docker-kubernetes └ proxy-app └ web-service └ modules └ test └ README.md web-service: a web service that you want proxied.
  • 113.
    variable "url_to_proxy" { description= "The URL to proxy." type = string } proxy-app takes in the URL to proxy via an input variable
  • 114.
    output "url" { value= module.web_service.url } web-service exposes its URL via an output variable
  • 115.
    infrastructure-as-code-testing-talk └ examples └ modules └test └ hello_world_app_test.go └ docker_kubernetes_test.go └ proxy_app_test.go └ README.md Create proxy_app_test.go
  • 116.
    func TestProxyApp(t *testing.T){ webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } The basic test structure
  • 117.
    func TestProxyApp(t *testing.T){ webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 1. Configure options for the web service
  • 118.
    func TestProxyApp(t *testing.T){ webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 2. Deploy the web service
  • 119.
    func TestProxyApp(t *testing.T){ webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 3. Configure options for the proxy app (passing it the web service options)
  • 120.
    func TestProxyApp(t *testing.T){ webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 4. Deploy the proxy app
  • 121.
    func TestProxyApp(t *testing.T){ webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 5. Validate the proxy app works
  • 122.
    func TestProxyApp(t *testing.T){ webServiceOpts := configWebService(t) defer terraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) } 6. At the end of the test, undeploy the proxy app and the web service
  • 123.
    func configWebService(t *testing.T)*terraform.Options { return &terraform.Options{ TerraformDir: "../examples/web-service", } } The configWebService method
  • 124.
    func configProxyApp(t *testing.T,webServiceOpts *terraform.Options) *terraform.Options { url := terraform.Output(t, webServiceOpts, "url") return &terraform.Options{ TerraformDir: "../examples/proxy-app", Vars: map[string]interface{}{ "url_to_proxy": url, }, } } The configProxyApp method
  • 125.
    func configProxyApp(t *testing.T,webServiceOpts *terraform.Options) *terraform.Options { url := terraform.Output(t, webServiceOpts, "url") return &terraform.Options{ TerraformDir: "../examples/proxy-app", Vars: map[string]interface{}{ "url_to_proxy": url, }, } } 1. Read the url output from the web- service module
  • 126.
    func configProxyApp(t *testing.T,webServiceOpts *terraform.Options) *terraform.Options { url := terraform.Output(t, webServiceOpts, "url") return &terraform.Options{ TerraformDir: "../examples/proxy-app", Vars: map[string]interface{}{ "url_to_proxy": url, }, } } 2. Pass it in as the url_to_proxy input to the proxy-app module
  • 127.
    func validate(t *testing.T,opts *terraform.Options) { url := terraform.Output(t, opts, "url") http_helper.HttpGetWithRetry(t, url, // URL to test 200, // Expected status code `{"text":"Hello, World!"}`, // Expected body 10, // Max retries 3 * time.Second // Time between retries ) } The validate method
  • 128.
    $ go test-v -timeout 15m -run TestProxyApp … --- PASS: TestProxyApp (182.44s) Run go test. You’re now testing multiple modules together!
  • 129.
    $ go test-v -timeout 15m -run TestProxyApp … --- PASS: TestProxyApp (182.44s) But integration tests can take (many) minutes to run…
  • 130.
    Integration tests 1. Example:Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
  • 131.
    Infrastructure tests cantake a long time to run
  • 132.
    One way tosave time: run tests in parallel
  • 133.
    func TestProxyApp(t *testing.T){ t.Parallel() // The rest of the test code } func TestHelloWorldAppUnit(t *testing.T) { t.Parallel() // The rest of the test code } Enable test parallelism in Go by adding t.Parallel() as the 1st line of each test.
  • 134.
    $ go test-v -timeout 15m === RUN TestHelloWorldApp === RUN TestDockerKubernetes === RUN TestProxyApp Now, if you run go test, all the tests with t.Parallel() will run in parallel
  • 135.
    But there’s agotcha: resource conflicts
  • 136.
    resource "aws_iam_role" "role_example"{ name = "example-iam-role" } resource "aws_security_group" "sg_example" { name = "security-group-example" } Example: module with hard-coded IAM Role and Security Group names
  • 137.
    resource "aws_iam_role" "role_example"{ name = "example-iam-role" } resource "aws_security_group" "sg_example" { name = "security-group-example" } If two tests tried to deploy this module in parallel, the names would conflict!
  • 138.
    Key takeaway: youmust namespace all your resources
  • 139.
    resource "aws_iam_role" "role_example"{ name = var.name } resource "aws_security_group" "sg_example" { name = var.name } Example: use variables in all resource names…
  • 140.
    uniqueId := random.UniqueId() return&terraform.Options{ TerraformDir: "../examples/proxy-app", Vars: map[string]interface{}{ "name": fmt.Sprintf("text-proxy-app-%s", uniqueId) }, } At test time, set the variables to a randomized value to avoid conflicts
  • 141.
    Integration tests 1. Example:Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
  • 142.
    Consider the structureof the proxy-app integration test:
  • 143.
    1. Deploy web-service 2.Deploy proxy-app 3. Validate proxy-app 4. Undeploy proxy-app 5. Undeploy web-service
  • 144.
    1. Deploy web-service 2.Deploy proxy-app 3. Validate proxy-app 4. Undeploy proxy-app 5. Undeploy web-service When iterating locally, you sometimes want to re-run just one of these steps.
  • 145.
    1. Deploy web-service 2.Deploy proxy-app 3. Validate proxy-app 4. Undeploy proxy-app 5. Undeploy web-service But as the code is written now, you have to run all steps on each test run.
  • 146.
    1. Deploy web-service 2.Deploy proxy-app 3. Validate proxy-app 4. Undeploy proxy-app 5. Undeploy web-service And that can add up to a lot of overhead. (~3 min) (~2 min) (~30 seconds) (~1 min) (~2 min)
  • 147.
    Key takeaway: breakyour tests into independent test stages
  • 148.
    webServiceOpts := configWebService(t) deferterraform.Destroy(t, webServiceOpts) terraform.InitAndApply(t, webServiceOpts) proxyAppOpts := configProxyApp(t, webServiceOpts) defer terraform.Destroy(t, proxyAppOpts) terraform.InitAndApply(t, proxyAppOpts) validate(t, proxyAppOpts) The original test structure
  • 149.
    stage := test_structure.RunTestStage deferstage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) The test structure with test stages
  • 150.
    stage := test_structure.RunTestStage deferstage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) 1. RunTestStage is a helper function from Terratest.
  • 151.
    stage := test_structure.RunTestStage deferstage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) 2. Wrap each stage of your test with a call to RunTestStage
  • 152.
    stage := test_structure.RunTestStage deferstage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) 3. Define each stage in a function (you’ll see this code shortly).
  • 153.
    stage := test_structure.RunTestStage deferstage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) 4. Give each stage a unique name
  • 154.
    stage := test_structure.RunTestStage deferstage(t, "cleanup_web_service", cleanupWebService) stage(t, "deploy_web_service", deployWebService) defer stage(t, "cleanup_proxy_app", cleanupProxyApp) stage(t, "deploy_proxy_app", deployProxyApp) stage(t, "validate", validate) Any stage foo can be skipped by setting the env var SKIP_foo=true
  • 155.
    $ SKIP_cleanup_web_service=true $ SKIP_cleanup_proxy_app=true Example:on the very first test run, skip the cleanup stages.
  • 156.
    $ go test-v -timeout 15m -run TestProxyApp Running stage 'deploy_web_service'… Running stage 'deploy_proxy_app'… Running stage 'validate'… Skipping stage 'cleanup_proxy_app'… Skipping stage 'cleanup_web_service'… --- PASS: TestProxyApp (105.73s) That way, after the test finishes, the infrastructure will still be running.
  • 157.
    $ SKIP_deploy_web_service=true $ SKIP_deploy_proxy_app=true Now,on the next several test runs, you can skip the deploy stages too.
  • 158.
    $ go test-v -timeout 15m -run TestProxyApp Skipping stage 'deploy_web_service’… Skipping stage 'deploy_proxy_app'… Running stage 'validate'… Skipping stage 'cleanup_proxy_app'… Skipping stage 'cleanup_web_service'… --- PASS: TestProxyApp (14.22s) This allows you to iterate on solely the validate stage…
  • 159.
    $ go test-v -timeout 15m -run TestProxyApp Skipping stage 'deploy_web_service’… Skipping stage 'deploy_proxy_app'… Running stage 'validate'… Skipping stage 'cleanup_proxy_app'… Skipping stage 'cleanup_web_service'… --- PASS: TestProxyApp (14.22s) Which dramatically speeds up your iteration / feedback cycle!
  • 160.
    $ SKIP_validate=true $ unsetSKIP_cleanup_web_service $ unset SKIP_cleanup_proxy_app When you’re done iterating, skip validate and re-enable cleanup
  • 161.
    $ go test-v -timeout 15m -run TestProxyApp Skipping stage 'deploy_web_service’… Skipping stage 'deploy_proxy_app’… Skipping stage 'validate’… Running stage 'cleanup_proxy_app’… Running stage 'cleanup_web_service'… --- PASS: TestProxyApp (59.61s) This cleans up everything that was left running.
  • 162.
    func deployWebService(t *testing.T){ opts := configWebServiceOpts(t) test_structure.SaveTerraformOptions(t, "/tmp", opts) terraform.InitAndApply(t, opts) } func cleanupWebService(t *testing.T) { opts := test_structure.LoadTerraformOptions(t, "/tmp") terraform.Destroy(t, opts) } Note: each time you run test stages via go test, it’s a separate OS process.
  • 163.
    func deployWebService(t *testing.T){ opts := configWebServiceOpts(t) test_structure.SaveTerraformOptions(t, "/tmp", opts) terraform.InitAndApply(t, opts) } func cleanupWebService(t *testing.T) { opts := test_structure.LoadTerraformOptions(t, "/tmp") terraform.Destroy(t, opts) } So to pass data between stages, one stage needs to write the data to disk…
  • 164.
    func deployWebService(t *testing.T){ opts := configWebServiceOpts(t) test_structure.SaveTerraformOptions(t, "/tmp", opts) terraform.InitAndApply(t, opts) } func cleanupWebService(t *testing.T) { opts := test_structure.LoadTerraformOptions(t, "/tmp") terraform.Destroy(t, opts) } And the other stages need to read that data from disk.
  • 165.
    Integration tests 1. Example:Terraform integration tests 2. Test parallelism 3. Test stages 4. Test retries
  • 166.
    Real infrastructure canfail for intermittent reasons (e.g., bad EC2 instance, Apt downtime, Terraform bug)
  • 167.
    To avoid “flaky”tests, add retries for known errors.
  • 168.
    &terraform.Options{ TerraformDir: "../examples/proxy-app", RetryableTerraformErrors: map[string]string{ "net/http:TLS handshake timeout": "Terraform bug", }, MaxRetries: 3, TimeBetweenRetries: 3*time.Second, } Example: retry up to 3 times on a known TLS error in Terraform.
  • 169.
    1. Static analysis 2.Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
  • 170.
    End-to-end tests: testyour entire infrastructure works together.
  • 171.
    How do youtest this entire thing?
  • 172.
    You could usethe same strategy… 1. Deploy all the infrastructure 2. Validate it works (e.g., via HTTP requests, API calls, SSH commands, etc.) 3. Undeploy all the infrastructure
  • 173.
    But it’s rareto write end-to- end tests this way. Here’s why:
  • 174.
  • 175.
    e2e Tests Integration Tests Unit Tests Staticanalysis Cost, brittleness, run time
  • 176.
    e2e Tests Integration Tests Unit Tests Staticanalysis 60 – 240+ minutes 5 – 60 minutes 1 – 20 minutes 1 – 60 seconds
  • 177.
    e2e Tests Integration Tests Unit Tests Staticanalysis E2E tests are too slow to be useful 60 – 240+ minutes 5 – 60 minutes 1 – 20 minutes 1 – 60 seconds
  • 178.
    Another problem withE2E tests: brittleness.
  • 179.
  • 180.
    Assume a singleresource (e.g., EC2 instance) has a 1/1000 (0.1%) chance of failure.
  • 181.
    Test type #of resources Chance of failure Unit tests 10 1% Integration tests 50 5% End-to-end tests 500+ 40%+ The more resources your tests deploy, the flakier they will be.
  • 182.
    Test type #of resources Chance of failure Unit tests 10 1% Integration tests 50 5% End-to-end tests 500+ 40%+ You can work around the failure rate for unit & integration tests with retries
  • 183.
    Test type #of resources Chance of failure Unit tests 10 1% Integration tests 50 5% End-to-end tests 500+ 40%+ You can work around the failure rate for unit & integration tests with retries
  • 184.
    Key takeaway: E2Etests from scratch are too slow and too brittle to be useful
  • 185.
    Instead, you cando incremental E2E testing!
  • 186.
  • 187.
  • 188.
  • 189.
    1. Static analysis 2.Unit tests 3. Integration tests 4. End-to-end tests 5. Conclusion Outline
  • 190.
  • 191.
    Technique Strengths Weaknesses Staticanalysis 1. Fast 2. Stable 3. No need to deploy real resources 4. Easy to use 1. Very limited in errors you can catch 2. You don’t get much confidence in your code solely from static analysis Unit tests 1. Fast enough (1 – 10 min) 2. Mostly stable (with retry logic) 3. High level of confidence in individual units 1. Need to deploy real resources 2. Requires writing non-trivial code Integration tests 1. Mostly stable (with retry logic) 2. High level of confidence in multiple units working together 1. Need to deploy real resources 2. Requires writing non-trivial code 3. Slow (10 – 30 min) End-to-end tests 1. Build confidence in your entire architecture 1. Need to deploy real resources 2. Requires writing non-trivial code 3. Very slow (60 min – 240+ min)* 4. Can be brittle (even with retry logic)*
  • 192.
  • 193.
    All of them! Theyall catch different types of bugs.
  • 194.
    e2e Tests Keep in mindthe test pyramid Integration Tests Unit Tests Static analysis
  • 195.
    e2e Tests Lots of unittests + static analysis Integration Tests Unit Tests Static analysis
  • 196.
    e2e Tests Fewer integration tests IntegrationTests Unit Tests Static analysis
  • 197.
    e2e Tests A handful ofhigh-value e2e tests Integration Tests Unit Tests Static analysis
  • 198.
  • 199.
    Fight the fear& build confidence in your code with automated tests
  • 200.