The document discusses handling unknown words in named entity recognition using transliteration. It proposes an approach where named entities in training data are transliterated into other languages and stored in transliteration files. During testing, if an unknown entity is encountered, it is checked against the transliteration files and assigned the corresponding tag if found. The approach is shown to achieve 95.8% recall, 96.3% precision and 96.04% F-measure on a multilingual named entity recognition task handling words from English, Hindi, Marathi, Punjabi and Urdu. Performance metrics for named entity recognition systems such as precision, recall and F-measure are also discussed.