It Ain't Tasseography 10 Key Performance Indicators for MongoDB
Kyle Banker kyle@10gen.com
@hwaet
Questions about speed
MongoDB is a high-performance database, but how do I know that I'm getting the best performance?
We'll cover: Tools Performance Indicators Remedies
Prelude: Tools
1. mongostat
2. serverStatus
db.serverStatus(); { "host" : "arete.local", "version" : "1.9.0-pre-", "process" : "mongod", "uptime" : 619052 } // Lots more stats....
3. Profiler
> db.setProfilingLevel(2) { "was" : 0, "slowms" : 100, "ok" : 1 }
> db.system.profile.find().sort({$natural: -1}) { "ts" : ISODate("2011-05-24T14:20:09.711Z"), "info" : "query docs.spreadsheets reslen:257 nscanned:1805535 query: { query: {}, $explain: true } nreturned:1 1407ms", "millis" : 1407 }
4. Monitoring service Nagios Munin MMS
Indicators
1. Slow ops
Here's how they appear in the log: Sun May 22 19:01:47 [conn10] query docs.spreadsheets ntoreturn:100 reslen:510436 nscanned:19976 { username: "Minner, Cori" } nreturned:100 147ms
2. Replication lag
test-rs:PRIMARY> rs.status() { "set" : "test-rs", "date" : ISODate("2011-05-24T14:19:35Z"), "myState" : 1, "members" : [ { "_id" : 0, "name" : "localhost:30000", "stateStr" : "PRIMARY", "optimeDate" : ISODate("2011-05-18T19:19:26Z"), }, { "_id" : 1, "name" : "localhost:30001", "stateStr" : "SECONDARY", "optimeDate" : ISODate("2011-05-22T14:14:29Z"), } }
3. Resident memory
> db.serverStatus().mem { "bits" : 64, // Need 64, not 32 "resident" : 7151, // Physical memory "virtual" : 14248, // Files + heap "mapped" : 6942 // Datafiles }
Virtual Memory Physical (Per Process) Memory RAM Disk
use docs > db.stats() { "db" : "docs", "collections" : 3, "objects" : 805543, "avgObjSize" : 5107.312096312674, "dataSize" : 4114159508, // ~4GB "storageSize" : 4282908160, // ~4GB "numExtents" : 33, "indexes" : 3, "indexSize" : 126984192, // ~126MB "fileSize" : 8519680000, // ~8.5GB "ok" : 1 }
Note: fileSize include pre-allocation.
storageSize + indexSize = ~5GB
4. Page faults
> db.serverStatus().extra_info { "note" : "fields vary by platform", "heap_usage_bytes" : 210656, "page_faults" : 2381 }
5. Write-lock percentage
> db.serverStatus().globalLock { "totalTime" : 194616196335, "lockTime" : 53865711, "ratio" : 0.000276779178785711, }
Concurrency One writer OR many readers. Global. Yields on long-running ops.
ΔlockTime / ΔtotalTime
(web console)
High lock percentage?
You're probably paging.
6. Reader- and writer-queues
> db.serverStatus().globalLock "globalLock" : { "totalTime" : 430154769, "lockTime" : 17547681, "ratio" : 0.0407938776101306, "currentQueue" : { "total" : 1, "readers" : 1, "writers" : 0 }, "activeClients" : { "total" : 2, "readers" : 1, "writers" : 1 } }
> db.currentOp() { "inprog" : [ { "opid" : 194285, "active" : true, "lockType" : "read", "waitingForLock" : true, "secs_running" : 0, "op" : "query", "ns" : "docs.spreadsheets", "query" : { "username" : "Auxier, Han" }, "client" : "127.0.0.1:64918", "desc" : "conn" } ] }
If you have dozens of ops waiting for locks, you've got a problem.
7. Background flushing
> db.serverStatus().backgroundFlushing { "flushes" : 5634, "total_ms" : 83556, "average_ms" : 14.830670926517572, "last_ms" : 4, "last_finished" : ISODate("2011-05-24T14:30:00.863Z") }
Disk considerations RAID SSD SAN?
8. Connections
> db.serverStatus().connections { "current" : 2, "available" : 202 }
9. Network bytes in and out > db.serverStatus().network { "bytesIn" : 1132782538, "bytesOut" : 5181752122
10. Fragmentation
> db.spreadsheets.stats() { "ns" : "docs.spreadsheets", "size" : 8200046932, // 8GB "storageSize" : 11807223808, // 11GB // Extra space for new documents. "paddingFactor" : 1.4302, // Does index size seem reasonable? "totalIndexSize" : 345964544, "indexSizes" : { "_id_" : 66772992, "username_1_filename_1" : 146079744, "username_1_updated_at_1" : 133111808 }, "ok" : 1 }
The magic number is: 2
storageSize / size < 2
Is it greater than 2? Might not be reclaiming free space as quickly as needed. Padding might not be correctly calibrated. db.runCommand({compact: 1})
paddingFactor < 2
Is it greater than 2? You might have the wrong data model. Too many growing embedded documents? See MongoDB Schema Design.
Compact command // In MongoDB 1.9+ db.runCommand({ compact : 'spreadsheets' });
Summary

10 Key MongoDB Performance Indicators