Unit of Transfer •Internal —Usually governed by data bus width • External —Usually a block which is much larger than a word • Addressable unit —Smallest location which can be uniquely addressed —Word internally —Cluster on M$ disks
6.
Access Methods (1) •Sequential —Start at the beginning and read through in order —Access time depends on location of data and previous location —e.g. tape • Direct —Individual blocks have unique address —Access is by jumping to vicinity plus sequential search —Access time depends on location and previous location —e.g. disk
7.
Access Methods (2) •Random —Individual addresses identify locations exactly —Access time is independent of location or previous access —e.g. RAM • Associative —Data is located by a comparison with contents of a portion of the store —Access time is independent of location or previous access —e.g. cache
8.
Memory Hierarchy • Registers —InCPU • Internal or Main memory —May include one or more levels of cache —“RAM” • External memory —Backing store
Performance • Access time —Timebetween presenting the address and getting the valid data • Memory Cycle time —Time may be required for the memory to “recover” before next access —Cycle time is access + recovery • Transfer Rate —Rate at which data can be moved
So you wantfast? • It is possible to build a computer which uses only static RAM (see later) • This would be very fast • This would need no cache —How can you cache cache? • This would cost a very large amount
17.
Locality of Reference •During the course of the execution of a program, memory references tend to cluster • e.g. loops
18.
Cache • Small amountof fast memory • Sits between normal main memory and CPU • May be located on CPU chip or module
Cache operation –overview • CPU requests contents of memory location • Check cache for this data • If present, get from cache (fast) • If not present, read required block from main memory to cache • Then deliver from cache to CPU • Cache includes tags to identify which block of main memory is in each cache slot
Cache Design • Addressing •Size • Mapping Function • Replacement Algorithm • Write Policy • Block Size • Number of Caches
24.
Cache Addressing • Wheredoes cache sit? —Between processor and virtual memory management unit —Between MMU and main memory • Logical cache (virtual cache) stores data using virtual addresses —Processor accesses cache directly, not thorough physical cache —Cache access faster, before MMU address translation —Virtual addresses use same address space for different applications – Must flush cache on each context switch • Physical cache stores data using main memory physical addresses
25.
Size does matter •Cost —More cache is expensive • Speed —More cache is faster (up to a point) —Checking cache for data takes time
Mapping Function • Cacheof 64kByte • Cache block of 4 bytes —i.e. cache is 16k (214 ) lines of 4 bytes • 16MBytes main memory • 24 bit address —(224 =16M)
29.
Direct Mapping • Eachblock of main memory maps to only one cache line —i.e. if a block is in cache, it must be in one specific place • Address is in two parts • Least Significant w bits identify unique word • Most Significant s bits specify one memory block • The MSBs are split into a cache line field r and a tag of s-r (most significant)
30.
Direct Mapping Address Structure Tags-r Line or Slot r Word w 8 14 2 • 24 bit address • 2 bit word identifier (4 byte block) • 22 bit block identifier — 8 bit tag (=22-14) — 14 bit slot or line • No two blocks in the same line have the same Tag field • Check contents of cache by finding line and checking Tag
Direct Mapping Summary •Address length = (s + w) bits • Number of addressable units = 2s+w words or bytes • Block size = line size = 2w words or bytes • Number of blocks in main memory = 2s+ w/2w = 2s • Number of lines in cache = m = 2r • Size of tag = (s – r) bits
36.
Direct Mapping pros& cons • Simple • Inexpensive • Fixed location for given block —If a program accesses 2 blocks that map to the same line repeatedly, cache misses are very high
37.
Victim Cache • Lowermiss penalty • Remember what was discarded —Already fetched —Use again with little penalty • Fully associative • 4 to 16 cache lines • Between direct mapped L1 cache and next memory level
38.
Associative Mapping • Amain memory block can load into any line of cache • Memory address is interpreted as tag and word • Tag uniquely identifies block of memory • Every line’s tag is examined for a match • Cache searching gets expensive
Tag 22 bit Word 2bit Associative Mapping Address Structure • 22 bit tag stored with each 32 bit block of data • Compare tag field with tag entry in cache to check for hit • Least significant 2 bits of address identify which 16 bit word is required from 32 bit data block • e.g. —Address Tag Data Cache line —FFFFFC FFFFFC24682468 3FFF
43.
Associative Mapping Summary •Address length = (s + w) bits • Number of addressable units = 2s+w words or bytes • Block size = line size = 2w words or bytes • Number of blocks in main memory = 2s+ w/2w = 2s • Number of lines in cache = undetermined • Size of tag = s bits
44.
Set Associative Mapping •Cache is divided into a number of sets • Each set contains a number of lines • A given block maps to any line in a given set —e.g. Block B can be in any line of set i • e.g. 2 lines per set —2 way associative mapping —A given block can be in one of 2 lines in only one set
45.
Set Associative Mapping Example •13 bit set number • Block number in main memory is modulo 213 • 000000, 00A000, 00B000, 00C000 … map to same set
Set Associative Mapping AddressStructure • Use set field to determine cache set to look in • Compare tag field to see if we have a hit • e.g —Address Tag Data Set number —1FF 7FFC 1FF 12345678 1FFF —001 7FFC 001 11223344 1FFF Tag 9 bit Set 13 bit Word 2 bit
Set Associative MappingSummary • Address length = (s + w) bits • Number of addressable units = 2s+w words or bytes • Block size = line size = 2w words or bytes • Number of blocks in main memory = 2d • Number of lines in set = k • Number of sets = v = 2d • Number of lines in cache = kv = k * 2d • Size of tag = (s – d) bits
52.
Direct and SetAssociative Cache Performance Differences • Significant up to at least 64kB for 2-way • Difference between 2-way and 4-way at 4kB much less than 4kB to 8kB • Cache complexity increases with associativity • Not justified against increasing cache to 8kB or 16kB • Above 32kB gives no improvement • (simulation results)
Replacement Algorithms (2) Associative& Set Associative • Hardware implemented algorithm (speed) • Least Recently used (LRU) • e.g. in 2 way set associative —Which of the 2 block is lru? • First in first out (FIFO) —replace block that has been in cache longest • Least frequently used —replace block which has had fewest hits • Random
56.
Write Policy • Mustnot overwrite a cache block unless main memory is up to date • Multiple CPUs may have individual caches • I/O may address main memory directly
57.
Write through • Allwrites go to main memory as well as cache • Multiple CPUs can monitor main memory traffic to keep local (to CPU) cache up to date • Lots of traffic • Slows down writes • Remember bogus write through caches!
58.
Write back • Updatesinitially made in cache only • Update bit for cache slot is set when update occurs • If block is to be replaced, write to main memory only if update bit is set • Other caches get out of sync • I/O must access main memory through cache • N.B. 15% of memory references are writes
59.
Line Size • Retrievenot only desired word but a number of adjacent words as well • Increased block size will increase hit ratio at first —the principle of locality • Hit ratio will decreases as block becomes even bigger —Probability of using newly fetched information becomes less than probability of reusing replaced • Larger blocks —Reduce number of blocks that fit in cache —Data overwritten shortly after being fetched —Each additional word is less local so less likely to be needed • No definitive optimum value has been found • 8 to 64 bytes seems reasonable • For HPC systems, 64- and 128-byte most common
60.
Multilevel Caches • Highlogic density enables caches on chip —Faster than bus access —Frees bus for other transfers • Common to use both on and off chip cache —L1 on chip, L2 off chip in static RAM —L2 access much faster than DRAM or ROM —L2 often uses separate data path —L2 may now be on chip —Resulting in L3 cache – Bus access or now on chip…
Unified v SplitCaches • One cache for data and instructions or two, one for data and one for instructions • Advantages of unified cache —Higher hit rate – Balances load of instruction and data fetch – Only one cache to design & implement • Advantages of split cache —Eliminates cache contention between instruction fetch/decode unit and execution unit – Important in pipelining
63.
Pentium 4 Cache •80386 – no on chip cache • 80486 – 8k using 16 byte lines and four way set associative organization • Pentium (all versions) – two on chip L1 caches —Data & instructions • Pentium III – L3 cache added off chip • Pentium 4 —L1 caches – 8k bytes – 64 byte lines – four way set associative —L2 cache – Feeding both L1 caches – 256k – 128 byte lines – 8 way set associative —L3 cache on chip
64.
Intel Cache Evolution ProblemSolution Processor on which feature first appears External memory slower than the system bus. Add external cache using faster memory technology. 386 Increased processor speed results in external bus becoming a bottleneck for cache access. Move external cache on-chip, operating at the same speed as the processor. 486 Internal cache is rather small, due to limited space on chip Add external L2 cache using faster technology than main memory 486 Contention occurs when both the Instruction Prefetcher and the Execution Unit simultaneously require access to the cache. In that case, the Prefetcher is stalled while the Execution Unit’s data access takes place. Create separate data and instruction caches. Pentium Increased processor speed results in external bus becoming a bottleneck for L2 cache access. Create separate back-side bus that runs at higher speed than the main (front-side) external bus. The BSB is dedicated to the L2 cache. Pentium Pro Move L2 cache on to the processor chip. Pentium II Some applications deal with massive databases and must have rapid access to large amounts of data. The on-chip caches are too small. Add external L3 cache. Pentium III Move L3 cache on-chip. Pentium 4
Pentium 4 CoreProcessor • Fetch/Decode Unit —Fetches instructions from L2 cache —Decode into micro-ops —Store micro-ops in L1 cache • Out of order execution logic —Schedules micro-ops —Based on data dependence and resources —May speculatively execute • Execution units —Execute micro-ops —Data from L1 cache —Results in registers • Memory subsystem —L2 cache and systems bus
67.
Pentium 4 DesignReasoning • Decodes instructions into RISC like micro-ops before L1 cache • Micro-ops fixed length — Superscalar pipelining and scheduling • Pentium instructions long & complex • Performance improved by separating decoding from scheduling & pipelining — (More later – ch14) • Data cache is write back — Can be configured to write through • L1 cache controlled by 2 bits in register — CD = cache disable — NW = not write through — 2 instructions to invalidate (flush) cache and write back then invalidate • L2 and L3 8-way set-associative — Line size 128 bytes
ARM Cache Organization •Small FIFO write buffer —Enhances memory write performance —Between cache and main memory —Small c.f. cache —Data put in write buffer at processor clock speed —Processor continues execution —External write in parallel until empty —If buffer full, processor stalls —Data in write buffer not available until written – So keep buffer small