The numpy.median()
method computes the median along an array's specified axis.
Example
import numpy as np # create an array array1 = np.array([0, 1, 2, 3, 4, 5, 6, 7]) # calculate the median of the array median1 = np.median(array1) print(median1) # Output: 3.5
median() Syntax
The syntax of the numpy.median()
method is:
numpy.median(array, axis = None, out = None, overwrite_input = False, keepdims = <no value>)
median() Arguments
The numpy.median()
method takes following arguments:
array
- array containing numbers whose median we need to compute (can bearray_like
)axis
(optional) - axis or axes along which the medians are computed (int
ortuple of int
)out
(optional) - output array in which to place the result (ndarray
)override_input
(optional) -bool
value that determines if intermediate calculations can modify an arraykeepdims
(optional) - specifies whether to preserve the shape of the original array (bool
)
Notes: The default values of numpy.median()
have the following implications:
axis = None
- the median of the entire array is taken.- By default,
keepdims
will not be passed.
median() Return Value
The numpy.median()
method returns the median of the array.
Example 1: Find the median of a ndArray
import numpy as np # create an array array1 = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) # find the median of the entire array median1 = np.median(array1) # find the median across axis 0 median2 = np.median(array1, 0) # find the median across axis 0 and 1 median3 = np.median(array1, (0, 1)) print('\nmedian of the entire array:', median1) print('\nmedian across axis 0:\n', median2) print('\nmedian across axis 0 and 1', median3)
Output
median of the entire array: 3.5 median across axis 0: [[2. 3.] [4. 5.]] median across axis 0 and 1 [3. 4.]
Example 2: Using Optional keepdims Argument
If keepdims
is set to True
, the resultant median array is of the same number of dimensions as the original array.
import numpy as np array1 = np.array([[1, 2, 3], [4, 5, 6]]) # keepdims defaults to False result1 = np.median(array1, axis = 0) # pass keepdims as True result2 = np.median(array1, axis = 0, keepdims = True) print('Dimensions in original array:', array1.ndim) print('Without keepdims:', result1, 'with dimensions', result1.ndim) print('With keepdims:', result2, 'with dimensions', result2.ndim)
Output
Dimensions in original array: 2 Without keepdims: [2.5 3.5 4.5] with dimensions 1 With keepdims: [[2.5 3.5 4.5]] with dimensions 2
Example 3: Using Optional out Argument
The out
parameter allows to specify an output array where the result will be stored.
import numpy as np array1 = np.array([[1, 2, 3], [4, 5, 6]]) # create an output array output = np.zeros(3) # compute median and store the result in the output array np.median(array1, out = output, axis = 0) print('median:', output)
Output
median: [2.5 3.5 4.5]