#include <Graphics\Graphic.mqh> #include <Math\Stat\Logistic.mqh> #include <Math\Stat\Math.mqh> #property script_show_inputs //--- input parameters input double mu_par=6; // mean parameter of the distribution input double sigma_par=2; // scale parameter of the distribution //+------------------------------------------------------------------+ //| Script program start function | //+------------------------------------------------------------------+ void OnStart() { //--- hide the price chart ChartSetInteger(0,CHART_SHOW,false); //--- initialize the random number generator MathSrand(GetTickCount()); //--- generate a sample of the random variable long chart=0; string name="GraphicNormal"; int n=1000000; // the number of values in the sample int ncells=51; // the number of intervals in the histogram double x[]; // centers of the histogram intervals double y[]; // the number of values from the sample falling within the interval double data[]; // sample of random values double max,min; // the maximum and minimum values in the sample //--- obtain a sample from the logistic distribution MathRandomLogistic(mu_par,sigma_par,n,data); //--- calculate the data to plot the histogram CalculateHistogramArray(data,x,y,max,min,ncells); //--- obtain the sequence boundaries and the step for plotting the theoretical curve double step; GetMaxMinStepValues(max,min,step); step=MathMin(step,(max-min)/ncells); //--- obtain the theoretically calculated data at the interval of [min,max] double x2[]; double y2[]; MathSequence(min,max,step,x2); MathProbabilityDensityLogistic(x2,mu_par,sigma_par,false,y2); //--- set the scale double theor_max=y2[ArrayMaximum(y2)]; double sample_max=y[ArrayMaximum(y)]; double k=sample_max/theor_max; for(int i=0; i<ncells; i++) y[i]/=k; //--- output charts CGraphic graphic; if(ObjectFind(chart,name)<0) graphic.Create(chart,name,0,0,0,780,380); else graphic.Attach(chart,name); graphic.BackgroundMain(StringFormat("Logistic distribution mu=%G sigma=%G",mu_par,sigma_par)); graphic.BackgroundMainSize(16); //--- disable automatic scaling of the Y axis graphic.YAxis().AutoScale(false); graphic.YAxis().Max(theor_max); graphic.YAxis().Min(0); //--- plot all curves graphic.CurveAdd(x,y,CURVE_HISTOGRAM,"Sample").HistogramWidth(6); //--- and now plot the theoretical curve of the distribution density graphic.CurveAdd(x2,y2,CURVE_LINES,"Theory"); graphic.CurvePlotAll(); //--- plot all curves graphic.Update(); } //+------------------------------------------------------------------+ //| Calculate frequencies for data set | //+------------------------------------------------------------------+ bool CalculateHistogramArray(const double &data[],double &intervals[],double &frequency[], double &maxv,double &minv,const int cells=10) { if(cells<=1) return (false); int size=ArraySize(data); if(size<cells*10) return (false); minv=data[ArrayMinimum(data)]; maxv=data[ArrayMaximum(data)]; double range=maxv-minv; double width=range/cells; if(width==0) return false; ArrayResize(intervals,cells); ArrayResize(frequency,cells); //--- define the interval centers for(int i=0; i<cells; i++) { intervals[i]=minv+(i+0.5)*width; frequency[i]=0; } //--- fill the frequencies of falling within the interval for(int i=0; i<size; i++) { int ind=int((data[i]-minv)/width); if(ind>=cells) ind=cells-1; frequency[ind]++; } return (true); } //+------------------------------------------------------------------+ //| Calculates values for sequence generation | //+------------------------------------------------------------------+ void GetMaxMinStepValues(double &maxv,double &minv,double &stepv) { //--- calculate the absolute range of the sequence to obtain the precision of normalization double range=MathAbs(maxv-minv); int degree=(int)MathRound(MathLog10(range)); //--- normalize the maximum and minimum values to the specified precision maxv=NormalizeDouble(maxv,degree); minv=NormalizeDouble(minv,degree); //--- sequence generation step is also set based on the specified precision stepv=NormalizeDouble(MathPow(10,-degree),degree); if((maxv-minv)/stepv<10) stepv/=10.; } |