regression - Python natural smoothing splines

Regression - Python natural smoothing splines

Natural smoothing splines in Python can be implemented using libraries like scipy or statsmodels. Here's an example using scipy.interpolate.UnivariateSpline:

import numpy as np from scipy.interpolate import UnivariateSpline import matplotlib.pyplot as plt # Generate sample data x = np.linspace(0, 10, 20) y = np.sin(x) + np.random.normal(0, 0.1, x.size) # Fit a natural smoothing spline spline = UnivariateSpline(x, y, k=3) # Plot the original data plt.scatter(x, y, label='Data') # Plot the spline x_smooth = np.linspace(0, 10, 100) plt.plot(x_smooth, spline(x_smooth), label='Smoothing spline', color='red') plt.legend() plt.xlabel('x') plt.ylabel('y') plt.title('Natural Smoothing Spline') plt.show() 

This code generates sample data points, fits a natural smoothing spline (k=3 specifies cubic splines), and plots the original data points along with the smoothing spline. You can adjust the k parameter to change the degree of the spline.

Examples

  1. "Introduction to Regression Analysis in Python" Description: Learn the fundamentals of regression analysis using Python, covering linear, polynomial, and natural smoothing splines regression techniques.

    # Import required libraries import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import UnivariateSpline # Generate sample data x = np.linspace(0, 10, 100) y = np.sin(x) + np.random.normal(0, 0.1, 100) # Fit a natural smoothing spline spline = UnivariateSpline(x, y) # Plot original data and fitted spline plt.scatter(x, y, label='Original Data') plt.plot(x, spline(x), color='red', label='Natural Smoothing Spline') plt.legend() plt.show() 
  2. "Understanding Natural Smoothing Splines in Python" Description: Dive deep into the concept of natural smoothing splines in Python, exploring how they work and their applications in regression analysis.

    # Import required libraries from scipy.interpolate import UnivariateSpline # Generate sample data x = [0, 1, 2, 3, 4, 5, 6] y = [0, 1, 4, 9, 16, 25, 36] # Fit a natural smoothing spline spline = UnivariateSpline(x, y) # Evaluate the spline at specific points x_eval = np.linspace(0, 6, 100) y_eval = spline(x_eval) # Plot original data and fitted spline plt.scatter(x, y, label='Original Data') plt.plot(x_eval, y_eval, color='red', label='Natural Smoothing Spline') plt.legend() plt.show() 
  3. "Regression with Natural Smoothing Splines: Python Example" Description: Explore a practical example of regression using natural smoothing splines in Python, demonstrating their flexibility in capturing complex relationships.

    # Import required libraries import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import UnivariateSpline # Generate sample data x = np.linspace(0, 10, 100) y = np.sin(x) + np.random.normal(0, 0.1, 100) # Fit a natural smoothing spline with specified smoothing factor spline = UnivariateSpline(x, y, s=1) # Plot original data and fitted spline plt.scatter(x, y, label='Original Data') plt.plot(x, spline(x), color='red', label='Natural Smoothing Spline') plt.legend() plt.show() 
  4. "Comparison of Regression Techniques in Python" Description: Compare the performance of different regression techniques in Python, including linear regression, polynomial regression, and natural smoothing splines.

    # Import required libraries import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import UnivariateSpline # Generate sample data x = np.linspace(0, 10, 100) y = np.sin(x) + np.random.normal(0, 0.1, 100) # Fit a natural smoothing spline spline = UnivariateSpline(x, y) # Plot original data and fitted spline plt.scatter(x, y, label='Original Data') plt.plot(x, spline(x), color='red', label='Natural Smoothing Spline') plt.legend() plt.show() 
  5. "Non-Linear Regression in Python" Description: Explore non-linear regression techniques in Python, such as natural smoothing splines, to model complex relationships in data.

    # Import required libraries import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import UnivariateSpline # Generate sample data x = np.linspace(0, 10, 100) y = np.sin(x) + np.random.normal(0, 0.1, 100) # Fit a natural smoothing spline spline = UnivariateSpline(x, y) # Plot original data and fitted spline plt.scatter(x, y, label='Original Data') plt.plot(x, spline(x), color='red', label='Natural Smoothing Spline') plt.legend() plt.show() 
  6. "Smoothing Techniques for Regression in Python" Description: Learn about different smoothing techniques used in regression analysis, with a focus on natural smoothing splines, implemented in Python.

    # Import required libraries import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import UnivariateSpline # Generate sample data x = np.linspace(0, 10, 100) y = np.sin(x) + np.random.normal(0, 0.1, 100) # Fit a natural smoothing spline spline = UnivariateSpline(x, y) # Plot original data and fitted spline plt.scatter(x, y, label='Original Data') plt.plot(x, spline(x), color='red', label='Natural Smoothing Spline') plt.legend() plt.show() 
  7. "Python Implementation of Smoothing Splines" Description: Implement smoothing splines in Python, exploring their use cases and advantages in regression analysis.

    # Import required libraries import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import UnivariateSpline # Generate sample data x = np.linspace(0, 10, 100) y = np.sin(x) + np.random.normal(0, 0.1, 100) # Fit a natural smoothing spline spline = UnivariateSpline(x, y) # Plot original data and fitted spline plt.scatter(x, y, label='Original Data') plt.plot(x, spline(x), color='red', label='Natural Smoothing Spline') plt.legend() plt.show() 

More Tags

google-cloud-sql border-box nestedscrollview hierarchical-clustering delphi extjs kotlin-interop insert ajax screen

More Programming Questions

More Chemistry Calculators

More Date and Time Calculators

More Financial Calculators

More Livestock Calculators