Create a Google Vertex AI inference endpoint Generally available; Added in 8.15.0
Path parameters
-
The type of the inference task that the model will perform.
Values are
rerank
,text_embedding
,completion
, orchat_completion
. -
The unique identifier of the inference endpoint.
PUT /_inference/{task_type}/{googlevertexai_inference_id}
Console
PUT _inference/text_embedding/google_vertex_ai_embeddingss { "service": "googlevertexai", "service_settings": { "service_account_json": "service-account-json", "model_id": "model-id", "location": "location", "project_id": "project-id" } }
resp = client.inference.put( task_type="text_embedding", inference_id="google_vertex_ai_embeddingss", inference_config={ "service": "googlevertexai", "service_settings": { "service_account_json": "service-account-json", "model_id": "model-id", "location": "location", "project_id": "project-id" } }, )
const response = await client.inference.put({ task_type: "text_embedding", inference_id: "google_vertex_ai_embeddingss", inference_config: { service: "googlevertexai", service_settings: { service_account_json: "service-account-json", model_id: "model-id", location: "location", project_id: "project-id", }, }, });
response = client.inference.put( task_type: "text_embedding", inference_id: "google_vertex_ai_embeddingss", body: { "service": "googlevertexai", "service_settings": { "service_account_json": "service-account-json", "model_id": "model-id", "location": "location", "project_id": "project-id" } } )
$resp = $client->inference()->put([ "task_type" => "text_embedding", "inference_id" => "google_vertex_ai_embeddingss", "body" => [ "service" => "googlevertexai", "service_settings" => [ "service_account_json" => "service-account-json", "model_id" => "model-id", "location" => "location", "project_id" => "project-id", ], ], ]);
curl -X PUT -H "Authorization: ApiKey $ELASTIC_API_KEY" -H "Content-Type: application/json" -d '{"service":"googlevertexai","service_settings":{"service_account_json":"service-account-json","model_id":"model-id","location":"location","project_id":"project-id"}}' "$ELASTICSEARCH_URL/_inference/text_embedding/google_vertex_ai_embeddingss"
client.inference().put(p -> p .inferenceId("google_vertex_ai_embeddingss") .taskType(TaskType.TextEmbedding) .inferenceConfig(i -> i .service("googlevertexai") .serviceSettings(JsonData.fromJson("{\"service_account_json\":\"service-account-json\",\"model_id\":\"model-id\",\"location\":\"location\",\"project_id\":\"project-id\"}")) ) );
Request examples
A text embedding task
Run `PUT _inference/text_embedding/google_vertex_ai_embeddings` to create an inference endpoint to perform a `text_embedding` task type.
{ "service": "googlevertexai", "service_settings": { "service_account_json": "service-account-json", "model_id": "model-id", "location": "location", "project_id": "project-id" } }
Run `PUT _inference/rerank/google_vertex_ai_rerank` to create an inference endpoint to perform a `rerank` task type.
{ "service": "googlevertexai", "service_settings": { "service_account_json": "service-account-json", "project_id": "project-id" } }