Logo
Modules/Models/Embedding

HuggingFace

To use HuggingFace embeddings, you need to import HuggingFaceEmbedding from @llamaindex/huggingface.

Installation

npm i llamaindex @llamaindex/huggingface
pnpm add llamaindex @llamaindex/huggingface
yarn add llamaindex @llamaindex/huggingface
bun add llamaindex @llamaindex/huggingface
import { Document, Settings, VectorStoreIndex } from "llamaindex"; import { HuggingFaceEmbedding } from "@llamaindex/huggingface";  // Update Embed Model Settings.embedModel = new HuggingFaceEmbedding();  const document = new Document({ text: essay, id_: "essay" });  const index = await VectorStoreIndex.fromDocuments([document]);  const queryEngine = index.asQueryEngine();  const query = "What is the meaning of life?";  const results = await queryEngine.query({  query, });

Per default, HuggingFaceEmbedding is using the Xenova/all-MiniLM-L6-v2 model. You can change the model by passing the modelType parameter to the constructor. If you're not using a quantized model, set the quantized parameter to false.

For example, to use the not quantized BAAI/bge-small-en-v1.5 model, you can use the following code:

import { HuggingFaceEmbedding } from "@llamaindex/huggingface";  Settings.embedModel = new HuggingFaceEmbedding({  modelType: "BAAI/bge-small-en-v1.5",  quantized: false, });

API Reference

Edit on GitHub

Last updated on