A data analysis project exploring consumer behavior and sales trends through EDA using Python. Includes visualizations and insights derived from retail shopping data.
- Updated
Jul 17, 2025 - Jupyter Notebook
A data analysis project exploring consumer behavior and sales trends through EDA using Python. Includes visualizations and insights derived from retail shopping data.
A data analysis project exploring online consumer behavior and FOMO effects using EDA on survey data.
Research Project
Career Foundry data analytics project to provide a client recommendations on a marketing strategy. Jupyter notebooks include cleaning and merging data along with creating new columns to offer the best understanding of consumers' interactions with products.
This repository presents a comprehensive exploratory data analysis (EDA) project that investigates customer shopping trends and sales performance using Python.
Dự đoán hành vi người tiêu dùng dựa trên dữ liệu lịch sử mua sắm và tương tác trực tuyến tại Việt Nam.
Analysis of smart device usage trends to identify growth opportunities for Bellabeat using R.
Dự án này cung cấp một nền tảng phân tích dữ liệu dựa trên thông tin nhân sinh để giúp các nhà nghiên cứu và doanh nghiệp có cái nhìn sâu sắc hơn về hành vi và xu hướng của người tiêu dùng tại Việt Nam.
Effort–value dissociation: liking vs. price in consumer valuation
Large-scale sentiment analysis on Amazon beauty reviews revealing psychophysical threshold effects
Analytical code for pulses 2021 data
Smartphone Purchase Prediction Dashboard - An interactive web application for predicting and analyzing smartphone purchase behavior.
Paper-only case study on consumer preference prediction and false consensus; includes executive summary.
Customer segmentation analysis for MixITup using demographic, behavioral, and preference data. Includes preprocessing, exploratory data analysis, standardization, categorical encoding, clustering using K-Means++ and K-Medoids, and strategic marketing recommendations based on customer profiles.
Add a description, image, and links to the consumer-behavior topic page so that developers can more easily learn about it.
To associate your repository with the consumer-behavior topic, visit your repo's landing page and select "manage topics."