![]() |
A LearningRateSchedule
that uses an inverse time decay schedule.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.InverseTimeDecay( initial_learning_rate, decay_steps, decay_rate, staircase=False, name='InverseTimeDecay' )
Used in the notebooks
Used in the tutorials |
---|
When training a model, it is often useful to lower the learning rate as the training progresses. This schedule applies the inverse decay function to an optimizer step, given a provided initial learning rate. It requires a step
value to compute the decayed learning rate. You can just pass a backend variable that you increment at each training step.
The schedule is a 1-arg callable that produces a decayed learning rate when passed the current optimizer step. This can be useful for changing the learning rate value across different invocations of optimizer functions. It is computed as:
def decayed_learning_rate(step): return initial_learning_rate / (1 + decay_rate * step / decay_step)
or, if staircase
is True
, as:
def decayed_learning_rate(step): return initial_learning_rate / (1 + decay_rate * floor(step / decay_step))
You can pass this schedule directly into a keras.optimizers.Optimizer
as the learning rate. Example: Fit a Keras model when decaying 1/t with a rate of 0.5:
... initial_learning_rate = 0.1 decay_steps = 1.0 decay_rate = 0.5 learning_rate_fn = keras.optimizers.schedules.InverseTimeDecay( initial_learning_rate, decay_steps, decay_rate) model.compile(optimizer=keras.optimizers.SGD( learning_rate=learning_rate_fn), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(data, labels, epochs=5)
Returns | |
---|---|
A 1-arg callable learning rate schedule that takes the current optimizer step and outputs the decayed learning rate, a scalar tensor of the same type as initial_learning_rate . |
Methods
from_config
@classmethod
from_config( config )
Instantiates a LearningRateSchedule
from its config.
Args | |
---|---|
config | Output of get_config() . |
Returns | |
---|---|
A LearningRateSchedule instance. |
get_config
get_config()
__call__
__call__( step )
Call self as a function.