Skip to content

cxhernandez/osprey

 
 

Repository files navigation

Osprey

Build Status Coverage Status PyPi version License DOI Research software impact Documentation

Logo

Osprey is an easy-to-use tool for hyperparameter optimization for machine learning algorithms in python using scikit-learn (or using scikit-learn compatible APIs).

Each Osprey experiment combines an dataset, an estimator, a search space (and engine), cross validation and asynchronous serialization for distributed parallel optimization of model hyperparameters.

Documentation

For full documentation, please visit the Osprey homepage.

Installation

If you have an Anaconda Python distribution, installation is as easy as:

$ conda install -c omnia osprey 

You can also install Osprey with pip:

$ pip install osprey 

Alternatively, you can install directly from this GitHub repo:

$ git clone https://github.com/msmbuilder/osprey.git $ cd osprey && git checkout 1.1.0 $ python setup.py install 

Example using MSMBuilder

Below is an example of an osprey config file to cross validate Markov state models based on varying the number of clusters and dihedral angles used in a model:

estimator: eval_scope: msmbuilder eval: |  Pipeline([  ('featurizer', DihedralFeaturizer(types=['phi', 'psi'])),  ('cluster', MiniBatchKMeans()),  ('msm', MarkovStateModel(n_timescales=5, verbose=False)),  ])  search_space: cluster__n_clusters: min: 10 max: 100 type: int featurizer__types: choices: - ['phi', 'psi'] - ['phi', 'psi', 'chi1'] type: enum cv: 5 dataset_loader: name: mdtraj params: trajectories: ~/local/msmbuilder/Tutorial/XTC/*/*.xtc topology: ~/local/msmbuilder/Tutorial/native.pdb stride: 1 trials: uri: sqlite:///osprey-trials.db

Then run osprey worker. You can run multiple parallel instances of osprey worker simultaneously on a cluster too.

$ osprey worker config.yaml ... ---------------------------------------------------------------------- Beginning iteration 1 / 1 ---------------------------------------------------------------------- History contains: 0 trials Choosing next hyperparameters with random... {'cluster__n_clusters': 20, 'featurizer__types': ['phi', 'psi']} Fitting 5 folds for each of 1 candidates, totalling 5 fits [Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.3s [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.8s finished --------------------------------- Success! Model score = 4.080646 (best score so far = 4.080646) --------------------------------- 1/1 models fit successfully. time: October 27, 2014 10:44 PM elapsed: 4 seconds. osprey worker exiting. 

You can dump the database to JSON or CSV with osprey dump.

Dependencies

  • python>=2.7.11
  • six>=1.10.0
  • pyyaml>=3.11
  • numpy>=1.10.4
  • scipy>=0.17.0
  • scikit-learn>=0.17.0
  • sqlalchemy>=1.0.10
  • bokeh>=0.12.0
  • matplotlib>=1.5.0
  • pandas>=0.18.0
  • GPy (optional, required for gp strategy)
  • hyperopt (optional, required for hyperopt_tpe strategy)
  • nose (optional, for testing)

Contributing

In case you encounter any issues with this package, please consider submitting a ticket to the GitHub Issue Tracker. We also welcome any feature requests and highly encourage users to submit pull requests for bug fixes and improvements.

For more detailed information, please refer to our documentation.

Citing

If you use Osprey in your research, please cite:

@misc{osprey, author = {Robert T. McGibbon and  Carlos X. Hernández and  Matthew P. Harrigan and  Steven Kearnes and  Mohammad M. Sultan and  Stanislaw Jastrzebski and  Brooke E. Husic and  Vijay S. Pande}, title = {Osprey: Hyperparameter Optimization for Machine Learning}, month = sep, year = 2016, doi = {10.21105/joss.000341}, url = {http://dx.doi.org/10.21105/joss.00034} }

About

osprey is the plumbing for machine learning hyperparameter optimization.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.9%
  • Shell 3.1%