Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging, AAAI 2021
-
The simple 2D example can be run using the ipython notebook
DPItorch/notebook/DPI toy 2D results.ipynb -
The DPI radio interferometric example can be trained using
DPItorch/DPI_interferometry.py, and analyzed usingDPItorch/notebook/DPI interferometry results.ipynbpython DPI_interferometry.py --lr 1e-4 --clip 1e-3 --n_epoch 30000 --npix 32 --n_flow 16 --logdet 1.0 --save_path ./checkpoint/interferometry --obspath ../dataset/interferometry1/obs.uvfits -
The DPI MRI example can be trained using
DPItorch/DPI_interferometry.py, and analyzed usingDPItorch/notebook/DPI MRI results.ipynbpython DPI_MRI.py --lr 1e-5 --clip 1e-3 --n_epoch 100000 --npix 64 --n_flow 16 --ratio 4 --logdet 1.0 --tv 1e3 --save_path ./checkpoint/mri --impath ../dataset/fastmri_sample/mri/knee/scan_0.pkl --maskpath ../dataset/fastmri_sample/mask/mask4.npy --sigma 5e-7
Arguments:
General: * lr (float) - learning rate * clip (float) - threshold for gradient clip * n_epoch (int) - number of epochs * npix (int) - size of reconstruction images (npix * npix) * n_flow (int) - number of affine coupling blocks * logdet (float) - weight of the entropy loss (larger means more diverse samples) * save_path (str) - folder that saves the learned DPI normalizing flow model For radio interferometric imaging: * obspath (str) - observation data file For compressed sensing MRI: * impath (str) - fast MRI image for generating MRI measurements * maskpath (str) - compressed sensing sampling mask * sigma (float) - additive measurement noise General requirements for PyTorch release:
For radio interferometric imaging:
Please check DPI.yml for the detailed Anaconda environment information. TensorFlow release is coming soon!
@inproceedings{sun2021deep, author = {He Sun and Katherine L. Bouman}, title = {Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging}, booktitle = {AAAI Conference on Artificial Intelligence (AAAI)}, year = {2021}, }
alpha-Deep Probabilistic Inference (alpha-DPI): efficient uncertainty quantification from exoplanet astrometry to black hole feature extraction, arXiv
-
The alpha-DPI radio interferometric example can be trained using
DPItorch/DPIx_interferometry.pypython DPIx_interferometry.py --n_gaussian 2 --divergence_type alpha --alpha_divergence 0.95 --n_epoch 20000 --lr 1e-4 --fov 160 --save_path ./checkpoint/interferometry_m87_mcfe/synthetic/crescentfloornuissance2/alpha095closure --obspath ../dataset/interferometry_m87/synthetic_crescentfloorgaussian2/obs_mring_synthdata_allnoise_scanavg_sysnoise2.uvfits -
The alpha-DPI planet direct imaging orbit fitting example can be trained using
DPItorch/DPIx_orbit.pypython DPIx_orbit.py --divergence_type alpha --alpha_divergence 0.6 --coordinate_type cartesian --save_path ./checkpoint/orbit_beta_pic_b/cartesian/alpha06
@article{sun2022alpha, title={alpha-Deep Probabilistic Inference (alpha-DPI): efficient uncertainty quantification from exoplanet astrometry to black hole feature extraction}, author={Sun, He and Bouman, Katherine L and Tiede, Paul and Wang, Jason J and Blunt, Sarah and Mawet, Dimitri}, journal={arXiv preprint arXiv:2201.08506}, year={2022} }