Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Francesc Alted

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

pip install [-e] .

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np >>> import numexpr as ne >>> a = np.arange(1e6) # Choose large arrays for better speedups >>> b = np.arange(1e6) >>> ne.evaluate("a + 1") # a simple expression array([ 1.00000000e+00, 2.00000000e+00, 3.00000000e+00, ..., 9.99998000e+05, 9.99999000e+05, 1.00000000e+06]) >>> ne.evaluate("a * b - 4.1 * a > 2.5 * b") # a more complex one array([False, False, False, ..., True, True, True], dtype=bool) >>> ne.evaluate("sin(a) + arcsinh(a/b)") # you can also use functions array([ NaN, 1.72284457, 1.79067101, ..., 1.09567006, 0.17523598, -0.09597844]) >>> s = np.array([b'abba', b'abbb', b'abbcdef']) >>> ne.evaluate("b'abba' == s") # string arrays are supported too array([ True, False, False], dtype=bool)

Free-threading support

Starting on CPython 3.13 onwards there is a new distribution that disables the Global Interpreter Lock (GIL) altogether, thus increasing the performance yields under multi-threaded conditions on a single interpreter, as opposed to having to use multiprocessing.

Whilst numexpr has been demonstrated to work under free-threaded CPython, considerations need to be taken when using numexpr native parallel implementation vs using Python threads directly in order to prevent oversubscription, we recommend either using the main CPython interpreter thread to spawn multiple C threads using the parallel numexpr API, or spawning multiple CPython threads that do not use the parallel API.

For more information about free-threaded CPython, we recommend visiting the following community Wiki <https://py-free-threading.github.io/>

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.13.1.tar.gz (119.3 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

numexpr-2.13.1-cp314-cp314t-win_amd64.whl (163.4 kB view details)

Uploaded CPython 3.14tWindows x86-64

numexpr-2.13.1-cp314-cp314t-win32.whl (169.2 kB view details)

Uploaded CPython 3.14tWindows x86

numexpr-2.13.1-cp314-cp314t-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

numexpr-2.13.1-cp314-cp314t-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

numexpr-2.13.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (456.7 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.13.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (465.9 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.13.1-cp314-cp314t-macosx_11_0_arm64.whl (152.6 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

numexpr-2.13.1-cp314-cp314t-macosx_10_13_x86_64.whl (163.3 kB view details)

Uploaded CPython 3.14tmacOS 10.13+ x86-64

numexpr-2.13.1-cp314-cp314-win_amd64.whl (162.4 kB view details)

Uploaded CPython 3.14Windows x86-64

numexpr-2.13.1-cp314-cp314-win32.whl (168.6 kB view details)

Uploaded CPython 3.14Windows x86

numexpr-2.13.1-cp314-cp314-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

numexpr-2.13.1-cp314-cp314-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

numexpr-2.13.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (446.0 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.13.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (455.7 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.13.1-cp314-cp314-macosx_11_0_arm64.whl (152.0 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

numexpr-2.13.1-cp314-cp314-macosx_10_13_x86_64.whl (162.6 kB view details)

Uploaded CPython 3.14macOS 10.13+ x86-64

numexpr-2.13.1-cp313-cp313t-win_amd64.whl (160.9 kB view details)

Uploaded CPython 3.13tWindows x86-64

numexpr-2.13.1-cp313-cp313t-win32.whl (167.4 kB view details)

Uploaded CPython 3.13tWindows x86

numexpr-2.13.1-cp313-cp313t-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

numexpr-2.13.1-cp313-cp313t-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

numexpr-2.13.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (456.5 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.13.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (465.6 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.13.1-cp313-cp313t-macosx_11_0_arm64.whl (152.6 kB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

numexpr-2.13.1-cp313-cp313t-macosx_10_13_x86_64.whl (163.3 kB view details)

Uploaded CPython 3.13tmacOS 10.13+ x86-64

numexpr-2.13.1-cp313-cp313-win_amd64.whl (160.0 kB view details)

Uploaded CPython 3.13Windows x86-64

numexpr-2.13.1-cp313-cp313-win32.whl (166.7 kB view details)

Uploaded CPython 3.13Windows x86

numexpr-2.13.1-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

numexpr-2.13.1-cp313-cp313-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

numexpr-2.13.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (446.1 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.13.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (455.5 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.13.1-cp313-cp313-macosx_11_0_arm64.whl (151.9 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

numexpr-2.13.1-cp313-cp313-macosx_10_13_x86_64.whl (162.5 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

numexpr-2.13.1-cp312-cp312-win_amd64.whl (160.0 kB view details)

Uploaded CPython 3.12Windows x86-64

numexpr-2.13.1-cp312-cp312-win32.whl (166.7 kB view details)

Uploaded CPython 3.12Windows x86

numexpr-2.13.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

numexpr-2.13.1-cp312-cp312-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

numexpr-2.13.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (443.1 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.13.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (452.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.13.1-cp312-cp312-macosx_11_0_arm64.whl (151.9 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numexpr-2.13.1-cp312-cp312-macosx_10_13_x86_64.whl (162.5 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

numexpr-2.13.1-cp311-cp311-win_amd64.whl (159.9 kB view details)

Uploaded CPython 3.11Windows x86-64

numexpr-2.13.1-cp311-cp311-win32.whl (166.6 kB view details)

Uploaded CPython 3.11Windows x86

numexpr-2.13.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

numexpr-2.13.1-cp311-cp311-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

numexpr-2.13.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (441.5 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.13.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (450.8 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.13.1-cp311-cp311-macosx_11_0_arm64.whl (151.8 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numexpr-2.13.1-cp311-cp311-macosx_10_9_x86_64.whl (162.9 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

numexpr-2.13.1-cp310-cp310-win_amd64.whl (159.9 kB view details)

Uploaded CPython 3.10Windows x86-64

numexpr-2.13.1-cp310-cp310-win32.whl (166.6 kB view details)

Uploaded CPython 3.10Windows x86

numexpr-2.13.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

numexpr-2.13.1-cp310-cp310-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

numexpr-2.13.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (439.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.13.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (449.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.13.1-cp310-cp310-macosx_11_0_arm64.whl (151.8 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

numexpr-2.13.1-cp310-cp310-macosx_10_9_x86_64.whl (162.9 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file numexpr-2.13.1.tar.gz.

File metadata

  • Download URL: numexpr-2.13.1.tar.gz
  • Upload date:
  • Size: 119.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1.tar.gz
Algorithm Hash digest
SHA256 ecb722249c2d6ed7fefe8504bb17e056481a5f31233c23a7ee02085c3d661fa1
MD5 269142fd305cd545f917217e7b4b7e5e
BLAKE2b-256 8dcac1217ae2c15c3284a9e219c269624f80fa1582622eb0400c711a26f84a43

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 163.4 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 a2cc21b2d2e59db63006f190dbf20f5485dd846770870504ff2a72c8d0406e4e
MD5 f5ef1cf97ddf4e8ebeeebe8d82d9c654
BLAKE2b-256 b41361598a6c5802aefc74e113c3f1b89c49a71e76ebb8b179940560408fdaa3

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314t-win32.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp314-cp314t-win32.whl
  • Upload date:
  • Size: 169.2 kB
  • Tags: CPython 3.14t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp314-cp314t-win32.whl
Algorithm Hash digest
SHA256 156591eb23684542fd53ca1cbefff872c47c429a200655ef7e59dd8c03eeeaef
MD5 5035109eb4fe6a4662e6195554f8924d
BLAKE2b-256 6f5cc6b5163798fb3631da641361fde77c082e46f56bede50757353462058ef0

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f4e4c5b38bb5695fff119672c3462d9a36875256947bafb2df4117b3271fd6a3
MD5 9fc784f48e0d7195e6c228c129d06e84
BLAKE2b-256 2757892857f8903f69e8f5e25332630215a32eb17a0b2535ed6d8d5ea3ba52e7

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2836e900377ce27e99c043a35e008bc911c51781cea47623612a4e498dfa9592
MD5 9aa6111356fdc9cf7b76151eee270f71
BLAKE2b-256 927864441da9c97a2b62be60ced33ef686368af6eb1157e032ee77aca4261603

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 abc3c1601380c90659b9ac0241357c5788ab58de148f56c5f98adffe293c308c
MD5 7dd86b1d139e04bbcd40660932d30a5f
BLAKE2b-256 40063724d1e26cec148e2309a92376acf9f6aba506dee28e60b740acb4d90ef1

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 65cb46136f068ede2fc415c5f3d722f2c7dde3eda04ceafcfbcac03933f5d997
MD5 084cb5e8a0cfab344eb645b4a1365f71
BLAKE2b-256 d38e2e4d64742f63d3932a62a96735e7b9140296b4e004e7cf2f8f9e227edf28

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 15cee07c74e4792993cd2ecd46c5683815e8758ac56e1d4d236d2c9eb9e8ae01
MD5 d7fb639e9364463211449084cd2c9d89
BLAKE2b-256 5e24fbf234d4dd154074d98519b10a44ed050ccbcd317f04fe24cbe1860d0e6b

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 37d31824b9c021078046bb2aa36aa1da23edaa7a6a8636ee998bf89a2f104722
MD5 3fdc0930bb357d9e71c7238a211796b1
BLAKE2b-256 b7d970ee0e4098d31fbcc0b6d7d18bfc24ce0f3ea6f824e9c490ce4a9ea18336

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 162.4 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 208cd9422d87333e24deb2fe492941cd13b65dc8b9ce665de045a0be89e9a254
MD5 ad85873743c6af9e23c729d66ca178e9
BLAKE2b-256 72feae6877a6cda902df19678ce6d5b56135f19b6a15d48eadbbdb64ba2daa24

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314-win32.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp314-cp314-win32.whl
  • Upload date:
  • Size: 168.6 kB
  • Tags: CPython 3.14, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp314-cp314-win32.whl
Algorithm Hash digest
SHA256 71f442fd01ebfa77fce1bac37f671aed3c0d47a55e460beac54b89e767fbc0fa
MD5 aab64847938ab978403ca6d5881ef2f5
BLAKE2b-256 5093a0578f726b39864f88ac259c70d7ee194ff9d223697c11fa9fb053dd4907

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 33cc6d662a606cc5184c7faef1d7b176474a8c46b8b0d2df9ff0fa67ed56425f
MD5 8bf47541f9fea05e3fbc4d85cd8697c1
BLAKE2b-256 2c3e5f75fb72c8ad71148bf8a13f8c3860a26ec4c39ae08b1b8c48201ae8ba1b

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0b0f326542185c23fca53e10fee3c39bdadc8d69a03c613938afaf3eea31e77f
MD5 8c32d4f1f45ebe79b4bd67495c49fcbe
BLAKE2b-256 34b8f96d0bce9fa499f9fe07c439e6f389318e79f20eae5296db9cacb364e5e0

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d7749e8c0ff0bae41a534e56fab667e529f528645a0216bb64260773ae8cb697
MD5 b7f8319a1f86c7e4a10949d6eac34820
BLAKE2b-256 01eb39e056a2887e18cdeed1ffbf1dcd7cba2bd010ad8ac7d4db42c389f0e310

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b6b01e9301bed8f89f6d561d79dcaa8731a75cc50efc072526cfbc07df74226c
MD5 0bdc4ed31ac84bea808fd14353b28b75
BLAKE2b-256 69304adf5699154b65a9b6a80ed1a3d3e4ab915318d6be54dd77c840a9ca7546

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a189d514e8aa321ef1c650a2873000c08f843b3e3e66d69072005996ac25809c
MD5 f1e7e68742d2c75e5cedd6bdbad276ac
BLAKE2b-256 e4a1c8bb07ebc37a3a65df5c0f280bac3f9b90f9cf4f94de18a0b0db6bcd5ddd

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp314-cp314-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp314-cp314-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cbadcbd2cf0822d595ccf5345c69478e9fe42d556b9823e6b0636a3efdf990f0
MD5 8f6fef07497bd26fdadd8ff5e5009786
BLAKE2b-256 47f5fa44066b3b41f6be89ad0ba778897f323c7939fb24a04ab559a577909a95

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 160.9 kB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 b9e6228db24b7faa96fbb2beee55f90fc8b0fe167cf288f8481c53ff5e95865a
MD5 5607e32edf5c5fc7676e98b8d6f0e6b0
BLAKE2b-256 a7631a3890f8c9bbac0c91ef04781bc765d23fbd964ef0f66b98637eace0c431

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 167.4 kB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 b73774176b15fe88242e7ed174b5be5f2e3e830d2cd663234b1495628a30854c
MD5 0dc229c18c03ce3a1ce9dee3174cfc01
BLAKE2b-256 35ed5eacf6c584e1c5e8408f63ae0f909f85c6933b0a6aac730ce3c971a9dd60

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b9203651668a3994cf3fe52e079ff6be1c74bf775622edbc226e94f3d8ec8ec4
MD5 ce46cf348e41352072a7d8cfd0561b26
BLAKE2b-256 897f90d9f4d5dfb7f033a8133dff6703245420113fb66babb5c465314680f9e1

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 36bd9a2b9bda42506377c7510c61f76e08d50da77ffb86a7a15cc5d57c56bb0f
MD5 39a265f55e767ddb45c4fc70c7fb514d
BLAKE2b-256 982f83dcc8b9d4edbc1814e552c090404bfa7e43dfcb7729a20df1d10281592b

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 40e02db74d66c5b0a81c925838f42ec2d58cc99b49cbaf682f06ac03d9ff4102
MD5 075f7590e429f1a4306788a4c8a9bf8c
BLAKE2b-256 91fdd99652d4d99ff6606f8d4e39e52220351c3314d0216e8ee2ea6a2a12b652

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c29a204b1d35941c088ec39a79c2e83e382729e4066b4b1f882aa5f70bf929a8
MD5 36d95b7c5095d841381effa69495979e
BLAKE2b-256 77e471c393ddfcfacfe9a9afc1624a61a15804384c5bb72b78934bb2f96a380a

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33ff9f071d06aaa0276cb5e2369efd517fe155ea091e43790f1f8bfd85e64d29
MD5 f68900b1f2c4ce6fe0fbb4b8a09b982e
BLAKE2b-256 a7c9d63cbca11844247c87ad90d28428e3362de4c94d2589db9cc63b199e4a03

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 366a7887c2bad86e6f64666e178886f606cf8e81a6871df450d19f0f83421501
MD5 67c5b6335d82049bffab625609697c5b
BLAKE2b-256 5dcde9d03848038d4c4b7237f46ebd8a8d3ee8fd5a87f44c87c487550a7bd637

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 160.0 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 9c7b1c3e9f398a5b062d9740c48ca454238bf1be433f0f75fe68619527bb7f1a
MD5 e67a77a0c61f8a324aa3374ae5eea3f9
BLAKE2b-256 57dd7b11419523a0eb20bb99c6c3134f44b760be956557eaf79cdb851360c4fe

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 166.7 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 824aea72663ec123e042341cea4a2a2b3c71f315e4bc58ee5035ffc7f945bd29
MD5 aa0ed9d439f53f5eef88fdfb887662c1
BLAKE2b-256 46316fb1c5e450c09c6ba9808e27e7546e3c68ee4def4dfcbe9c9dc1cfc23d78

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e22104ab53f0933b5b522829149990cb74e0a8ec4b69ff0e6545eb4641b3f013
MD5 fe5004685d3ea235c1b4bff3f4006913
BLAKE2b-256 8b2cc39be0f3e42afb2cb296d203d80d4dcf9a71d94be478ca4407e1a4cfe645

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0fc7b5b0f8d7ba6c81e948b1d967a56097194c894e4f57852ed8639fc653def2
MD5 a197eb1926f78678099cccf8576f0d2b
BLAKE2b-256 6cbe702faf87d4e7eac4b69eda20a143c6d4f149ca9c5a990db9aed58fa55ad0

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4874124bccc3c2462558ad2a75029bcc2d1c63ee4914b263bb06339e757efb85
MD5 ee51428c786936ed8437da20c2f37e59
BLAKE2b-256 bc7d3c5baf2bfe1c1504cbd3d993592e0e2596e83a61d6647e89fc8b38764496

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c615b13976e6332336a052d5b03be1fed231bc1afe07699f4c7cc116c7c3092c
MD5 c36e34098828f85f70478a352573d1a5
BLAKE2b-256 8ac913f421b2322c14062f9b22af9baf4c560c25ef2a9f7dd34a33f606c9cf6a

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d82d088f67647861b61a7b0e0148fd7487000a20909d65734821dd27e0839a68
MD5 2d541b674cfe81f040124adb8a8b72be
BLAKE2b-256 a9edaba137ba850fcac3f5e0c2e15b26420e00e93ab9a258757a4c1f2dca65de

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0e4314ee477a2cfb9ecf4b15f2ef24bf7859f62b35de3caef297136ff25bb0b0
MD5 f43dd2d8f556d85192ec68a91dac8ff2
BLAKE2b-256 55c8eee9c3e78f856483b21d836b1db821451b91a1f3f249ead1cdc290fb4172

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 160.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8230a8f7cd4e6ba4022643c85e119aa4ca90412267ef20acdf1f54fb3136680d
MD5 f0998e1e1d4cbb7fc47654670e75207d
BLAKE2b-256 b67e92c01806608a3d1c88aabbda42e4849036200a5209af374bfa5c614aa5e5

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 166.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e926b59d385de2396935b362143ac2c282176875cf8ee7baba0a150b58421b5c
MD5 e7d338f439bd3d8188f680e9ac257246
BLAKE2b-256 f13e037e9dc96f9681e7af694bf5abf699b137f1fccb8bb829c50505e98d60ba

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 30d189fc52ee4a33b869a0592553cd2ed686c20cded21b2ddf347a4d143f1bea
MD5 6a2fed3559f0b56cda2cf6078e38a7ba
BLAKE2b-256 72336b3164fdc553eceec901793f9df467a7b4151e21772514fc2a392f12c42f

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b86e1daa4e27d6bf6304008ed4630a055babf863db2ec8f282b4058bbfe466bd
MD5 d56503695ab09da0be048d3748041ccb
BLAKE2b-256 7b5e271bf56efac177abe6e5d5349365e460a2a4205a514c99e0b2203d827264

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b4280c8f7cc024846be8fdd6582572bb0b6bad98fb2a68a367ef5e6e2e130d5f
MD5 f951eb58a853eb4529bc5c52172daef5
BLAKE2b-256 311b11a1202f8b67dce8e119a9f6481d839b152cc0084940a146b52f8f38685b

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ca152998d44ea30b45ad6b8a050ac4a9408b61a17508df87ad0d919335d79b44
MD5 106b6958e937f5cce99d51e5717c5c95
BLAKE2b-256 ab654679408c4c61badbd12671920479918e2893c8488de8d5c7f801b3a5f57d

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 67a3dd8b51e94251f535a9a404f1ac939a3ebeb9398caad20ae9d0de37c6d3b3
MD5 e027045c991f8570c19a67fe7d63a1ee
BLAKE2b-256 91b88ea90b2c64ef26b14866a38d13bb496195856b810c1a18a96cb89693b6af

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6aa48c2f2bfa142dfe260441486452be8f70b5551c17bc846fccf76123d4a226
MD5 805fdcaa0622f3fd4510a7ce5422fc60
BLAKE2b-256 b524b87ad61f09132d92d92e93da8940055f1282ee30c913737ae977cebebab6

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 159.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 66d0292f3b9dc5faadb4dd8a89d733321ff01c9699aee0c3cdbf513c9505e39c
MD5 3753407acbed6efa34ac29e4d9376dcc
BLAKE2b-256 52625bd094657e051b1cb9e71f65ef4db733b50a24645f2380057fffc52aca6a

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 166.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 912488ddbd500937bb6f4dfc010bdb3bf757a76e0b93db2f2c56db49ef6b9351
MD5 25aed4e21d8ffb9bfc89731384b63016
BLAKE2b-256 734a56d3aca7bea28f66d82f0b9577a632c2ad18834e9467e06fc3595ddc8c54

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d29b3351de4c43b56d2ef7f138ab7a8988e797291bcbbd56d545e4e7902f254a
MD5 73a6138a1643a3cb18bb7dec9415f99b
BLAKE2b-256 c7150d037d173c3cd0254fdf1cf148fa4aa79da10119a688cc2e1027de3e7cee

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 78cb76676e63f02dcf507e3c563888018a68b6a2e2cd444628e09df270dfd0b2
MD5 7d27ccc86f3d51a5e8dfae8b1675df7b
BLAKE2b-256 6a04cfd65881165fd800e0ea17985b03793a7a16488c1a93257b2cfa658bb73a

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5a5a37b74561ed8dbd5f9be182d94419fa53f452e2d7d3e8d6dbef35a20f19f7
MD5 74fc2328d874fc9239dc5cc3e9957bf3
BLAKE2b-256 7745634492e37e31c9db273b6f0d39a83759bfda58ea32690a892b6a5246cfc4

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 58e2f111756fff63e27e495473d950e4c98bbebca55aa1572798b59110d6c84b
MD5 a62a502f1acae109b29fdbf728e00a52
BLAKE2b-256 bf6dc3a1c3c113a5cf72b431a9f4433511eb35f2063836ed1020f21781ca77aa

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91cf0521d8fed3f804640c4a6d22b5d9813d7e64b32c38215de163c7f092f7cc
MD5 e07ff1df56a4fdcd313443bd165adecc
BLAKE2b-256 4bbcbc081354c99d896b5986bb6683bc7f36e221e1464d9b8a5d9c5ad7a29c13

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bdf62745e072c670151c0705bddfe3f33c341dacb7eb255ddb1e8d2a257bfef5
MD5 b0191d5b1cd3d1e4f2eba9bc3a9cc8d0
BLAKE2b-256 60aa734ccb5b2d62ddb8c903adf1be8bf668df7fd31f886f8a274203a8317a43

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 159.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aadf3118b6ef87294277ffb77a9562970228341aaaa4b78de634a43ea8ea2c6e
MD5 b0f87da2a7acd6a396fb0ecac7e8e625
BLAKE2b-256 71f5f27ba83d134ce76708dec714e253665560e9e083425b6ff3d1d536b872e3

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.13.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 166.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for numexpr-2.13.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 790af35095626ad2d02201c56ac2d49ae45fc95a02af85f40808752ed32ee103
MD5 bc349c16c5712d0a49458144a686137e
BLAKE2b-256 1a26d111add556589fa8e37863fa89fac5ea914904982540eaf24adcf02994ae

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a75ddffc36f6b7a679fbc7df492685aed7e8888aec80ec2cd8e30f21fc019caa
MD5 cb2dbf491eb4f89bd13c962ab9d5f0f7
BLAKE2b-256 ae68922980751260b62e451f5b21adaa63581ec2d7c06ef2ed9e356b8529fea8

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 533ec2d77fc059e3868e9798ef2f13ab57161517cd2e0c521bb33d1dc99068ca
MD5 600ef89d38b7aee23e21f0645a941f96
BLAKE2b-256 0aeb290e3a871190e07d5de0ec1342cf38d2453b4b235f93a903b7d6bb969a7f

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2de5c8ca2f25690d48e475d53a3524876164227cf4044743818f5704c28a8639
MD5 390726b03678a77df68f7b2f6eccbfac
BLAKE2b-256 38a6f8ffb8519a20f3e58ad87a82a7ea31fbcd970dbac7d3c9531b5af4ece65a

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a12dbd4c07a8303c6f01cdade531d75c9b4f5b8f72cbe5821d8f9197ee6fba47
MD5 daeb1b93548bce4db1d4a9fdc8c35287
BLAKE2b-256 253659a71bd2cbd11ab8220474bd11a98cf4b4d65e90050ef68588e1caa40bb7

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ad6b5dfc191c766e3ec89d2e3f956f7ef3181a1f8bf2bb00ec48fb3bf97b44ac
MD5 9192d75f096fccb039c5793600c10c8f
BLAKE2b-256 4bc4cc0af2756065f1f97acf2237f6809ce72c0abfd31cc59e54e6f11a4fb1cb

See more details on using hashes here.

File details

Details for the file numexpr-2.13.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.13.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bdbc2b93ac59667f0ba725b24cd3b5559c300e91e179d09c74ebaf8c8961eef6
MD5 8988af1d40426e7cbd7089883faea03d
BLAKE2b-256 3540ec43ef49857b10111801e85b103f178d3d4473fa42ad3719fa059f55a257

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page