Tait's Hamiltonian graph conjecture asserted that every cubicpolyhedral graph is Hamiltonian. It was proposed by Tait in 1880 and refuted by Tutte (1946) with a counterexample on 46 vertices (Lederberg 1965) now known as Tutte's graph. Had the conjecture been true, it would have implied the four-color theorem.
The following table summarizes some named counterexamples, illustrated above. The smallest example with 38 vertices (the Barnette-Bośak-Lederberg graph; e.g., Lederberg 1965), was proved minimal by Holton and McKay (Holton and McKay 1988, van Cleemput and Zamfirescu 2018), and was apparently also discovered by D. Barnette and J. Bosák around the same time.
Berge, C. Graphs and Hypergraphs. New York: Elsevier, 1973.Bondy, J. A. and Murty, U. S. R. Fig. 9.27 in Graph Theory with Applications. New York: North Holland, 1976.Faulkner, G. B. and Younger, D. H. "Non-Hamiltonian Cubic Planar Maps." Discr. Math.7, 67-74, 1974.Grünbaum, B. Fig. 17.1.5 in Convex Polytopes, 2nd ed. New York: Springer-Verlag, 2003.Holton, D. A. and McKay, B. D. "The Smallest Non-Hamiltonian 3-Connected Cubic Planar Graphs Have 38 Vertices." J. Combin. Th. SeR. B45, 305-319, 1988.Honsberger, R. Mathematical Gems I. Washington, DC: Math. Assoc. Amer., pp. 82-89, 1973.Lederberg, J. "DENDRAL-64: A System for Computer Construction, Enumeration and Notation of Organic Molecules as Tree Structures and Cyclic Graphs. Part II. Topology of Cyclic Graphs." Interim Report to the National Aeronautics and Space Administration. Grant NsG 81-60. December 15, 1965. http://profiles.nlm.nih.gov/BB/A/B/I/U/_/bbabiu.pdf.Pegg, E. Jr. "The Icosian Game, Revisited." Mathematica J. 310-314, 11, 2009.Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, pp. 263 and 274, 1998.Sachs, H. "Ein von Kozyrev und Grinberg angegebener nicht-Hamiltonischer kubischer planarer Graph." In Beiträge zur Graphentheorie. pp. 127-130, 1968.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 198, 1990.Tait, P. G. "Remarks on the Colouring of Maps." Proc. Royal Soc. Edinburgh10, 729, 1880.Thomassen, C. "Planar Cubic Hypohamiltonian and Hypotraceable Graphs." J. Comb. Th. B30, 36-44, 1981.Tutte, W. T. "On Hamiltonian Circuits." J. London Math. Soc.21, 98-101, 1946.Tutte, W. T. "Non-Hamiltonian Planar Maps." In Graph Theory and Computing (Ed. R. Read). New York: Academic Press, pp. 295-301, 1972.van Cleemput, N. and Zamfirescu, C. T. "Regular Non-Hamiltonian Polyhedral Graphs." Appl. Math. Comput.338 192-206, 2018.Zamfirescu, T. "On Longest Paths and Circuits in Graphs." Math. Scand.38, 211-239, 1976.