See also
Bivalent Range,
Euler Line,
Gergonne Line,
Harmonic Conjugate,
Soddy Line Explore with Wolfram|Alpha
References
Casey, J. "Theory of Harmonic Section." §6.3 in A Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples, 5th ed., rev. enl. Dublin: Hodges, Figgis, & Co., pp. 87-94, 1888.Durell, C. V. "Harmonic Ranges and Pencils." Ch. 6 in Modern Geometry: The Straight Line and Circle. London: Macmillan, pp. 65-67, 1928.Graustein, W. C. "Harmonic Division." Ch. 4 in Introduction to Higher Geometry. New York: Macmillan, pp. 50-64, 1930.Hardy, G. H. A Course of Pure Mathematics, 10th ed. Cambridge, England: Cambridge University Press, pp. 99 and 106, 1967.Lachlan, R. "Harmonic Properties." §288-290 in An Elementary Treatise on Modern Pure Geometry. London: Macmillian, pp. 177 and 267-268, 1893.Referenced on Wolfram|Alpha
Harmonic Range Cite this as:
Weisstein, Eric W. "Harmonic Range." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/HarmonicRange.html
Subject classifications