The point at which the incircle and nine-point circle are tangent. It has triangle center function
(1)
and is Kimberling center .
If is the Feuerbach point a triangle and , , and are the midpoints of the sides , , and , respectively, then one of the distances , , and is equal to the sum of the two others. For example, in the above figure,
(2)
Distances to some other named triangle centers include
where is the triangle centroid , is the incenter , is the symmedian point , is the circumcenter , is the nine-point center , is the Spieker center , is the triangle area , and is the inradius .
See also Feuerbach Antipode ,
Feuerbach's Theorem ,
Feuerbach Triangle ,
Incircle ,
Nine-Point Circle Explore with Wolfram|Alpha References Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, p. 200, 1929. Kimberling, C. "Central Points and Central Lines in the Plane of a Triangle." Math. Mag. 67 , 163-187, 1994. Kimberling, C. "Feuerbach Point." http://faculty.evansville.edu/ck6/tcenters/class/feuer.html . Kimberling, C. "Encyclopedia of Triangle Centers: X(11)=Feuerbach Point." http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X11 . PandD Software. "Oppervlakte van voetpuntsdriehoeken, voetpuntscirkels." http://www.pandd.demon.nl/voetpdrieh.htm . Pedoe, D. Circles: A Mathematical View, rev. ed. Washington, DC: Math. Assoc. Amer., 1995. Salmon, G. Conic Sections, 6th ed. New York: Chelsea, p. 127, 1960. Suceava, B. and Yiu, P. "The Feuerbach Point and Euler Lines." Forum Geom. 6 , 191-197, 2006. http://forumgeom.fau.edu/FG2006volume6/FG200621index.html . Referenced on Wolfram|Alpha Feuerbach Point Cite this as: Weisstein, Eric W. "Feuerbach Point." From MathWorld --A Wolfram Resource. https://mathworld.wolfram.com/FeuerbachPoint.html
Subject classifications