where is the Riemann zeta function, which was subsequently rigorously proven true (Borwein and Borwein 1995). Sums involving can be re-expressed in terms of sums the form via
(4)
(5)
(6)
and
(7)
where is defined below.
Bailey et al. (1994) subsequently considered sums of the forms
for , given as a challenge problem by Borwein and Bailey (2003, pp. 24-25) and discussed in Bailey et al. (2006a, p. 39; Bailey et al. 2006b),
(44)
(45)
(46)
for , and
(47)
(48)
for , where is a polylogarithm, and is the Riemann zeta function (Bailey and Plouffe 1997, Bailey et al. 1994). Of these, only (P. Simone, pers. comm., Aug. 30, 2004), , and the identities for , and have been rigorously established.
Adamchik, V. "On Stirling Numbers and Euler Sums." J. Comput. Appl. Math.79, 119-130, 1997. http://www-2.cs.cmu.edu/~adamchik/articles/stirling.htm.Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2006. http://crd.lbl.gov/~dhbailey/expmath/maa-course/hyper-ema.pdf.Bailey, D. H.; Borwein, J. M.; and Girgensohn, R. "Experimental Evaluation of Euler Sums." Exper. Math.3, 17-30, 1994.Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. "Ten Problems in Experimental Mathematics." Amer. Math. Monthly113, 481-509, 2006.Bailey, D. and Plouffe, S. "Recognizing Numerical Constants." Organic Mathematics. Proceedings of the Workshop Held in Burnaby, BC, December 12-14, 1995 (Ed. J. Borwein, P. Borwein, L. Jörgenson, and R. Corless). Providence, RI: Amer. Math. Soc., pp. 73-88, 1997.Berndt, B. C. Ramanujan's Notebooks: Part I. New York: Springer-Verlag, 1985.Borwein, J. and Bailey, D. "Recognition of Euler Sums." §2.5 in Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 56-58, 2003.Borwein, D. and Borwein, J. M. "On Some Intriguing Sums Involving ." Proc. Amer. Math. Soc.123, 111-118, 1995.Borwein, D. and Borwein, J. M. "On an Intriguing Integral and Some Series Related to ." Proc. Amer. Math. Soc.123, 1191-1198, 1995.Borwein, D.; Borwein, J. M.; and Girgensohn, R. "Explicit Evaluation of Euler Sums." Proc. Edinburgh Math. Soc.38, 277-294, 1995.Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J.; and Lisonek, P. "Special Values of Multidimensional Polylogarithms." Trans. Amer. Math. Soc.353, 907-941, 2001.Boyadzhiev, K. N. "Evaluation of Euler-Zagier Sums." Int. J. Math. Math. Sci.27, 407-412, 2001. http://www2.onu.edu/~kboyadzh/e-zagier.pdf.Boyadzhiev, K. N. "Consecutive Evaluation of Euler Sums." Int. J. Math. Math. Sci.29, 555-561, 2002. http://www2.onu.edu/~kboyadzh/euler-c(1).pdf.Broadhurst, D. J. "On the Enumeration of Irreducible -Fold Euler Sums and Their Roles in Knot Theory and Field Theory." April 22, 1996. http://arxiv.org/abs/hep-th/9604128Broadhurst, D. J. "Massive 3-Loop Feynman Diagrams Reducible to Primitives of Algebras of the Sixth Root of Unity." March 11, 1998. http://arxiv.org/abs/hep-th/9803091.de Doelder, P. J. "On Some Series Containing and for Certain Values of and ." J. Comp. Appl. Math.37, 125-141, 1991.Ferguson, H. R. P.; Bailey, D. H.; and Arno, S. "Analysis of PSLQ, An Integer Relation Finding Algorithm." Math. Comput.68, 351-369, 1999.Flajolet, P. and Salvy, B. "Euler Sums and Contour Integral Representation." Experim. Math.7, 15-35, 1998.