Given a circle expressed in trilinear coordinates by
a central circle is a circle such that is a triangle center and is a homogeneous function that is symmetric in the side lengths , , and (Kimberling 1998, p. 226).
The following table summarizes the triangle centers whose trilinears correspond to a circle with (for some appropriate value of ). In the table, indicated a circle function that is known but which does not appear among the list of Kimberling centers . Note also that the circumcircle is not actually a central circle, since its trilinears 0:0:0 are not those of a triangle center .
The following table summarizes circles sorted by center and indicates concentric circles.
Kimberling center circles incenter Adams' circle , Conway circle , hexyl circle , incircle triangle centroid inner Napoleon circle , orthoptic circle of the Steiner inellipse , outer Napoleon circle circumcenter circumcircle , second Brocard circle , second Droz-Farny circle , Stammler circle orthocenter anticomplementary circle , Johnson triangle circumcircle , polar circle , first Droz-Farny circle nine-point center nine-point circle , Stammler circles radical circle , Steiner circle symmedian point cosine circle Spieker center excircles radical circle , Spieker circle de Longchamps point de Longchamps circle circumcenter of the tangential triangle tangential circle Brocard midpoint Gallatly circle , half-Moses circle , Moses circle Bevan point Bevan circle center of the sine-triple-angle circle sine-triple-angle circle eigencenter of orthic triangle Dou circle isoperimetric point outer Soddy circle equal detour point inner Soddy circle midpoint of the Brocard diameter Brocard circle , first Lemoine circle -Ceva conjugate of Neuberg circles radical circle -Ceva conjugate of reflection circle center of the Parry circle Parry circle first Morley center Morley's circle midpoint of and orthocentroidal circle outer Vecten circle inner Vecten circle Stevanović circle Longuet-Higgins point Longuet-Higgins circle Apollonius circle mixtilinear incircles radical circle Lester circle Lucas circles radical circle van Lamoen circle Mandart circle first Johnson-Yff circle second Johnson-Yff circle
See also Central Conic ,
Central Line ,
Circle ,
Circle Function Explore with Wolfram|Alpha References Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129 , 1-295, 1998. Referenced on Wolfram|Alpha Central Circle Cite this as: Weisstein, Eric W. "Central Circle." From MathWorld --A Wolfram Resource. https://mathworld.wolfram.com/CentralCircle.html
Subject classifications