Skip to main content
1 of 2

Convergence Rate Truncates Besov-Type Sequence Norm

Let $x:=(x_{i,j})_{i\in \mathbb{N},\, j=0,\dots,2^i}$ be a real-sequence and consider the (small) Besov-type sequence spaces with quasi-norms for $0<q,p,\alpha< \infty$ $$ \|x\|_{\alpha,p,q} := \left( \sum_{i=0}^{\infty} 2^{\alpha i p} \biggl( \sum_{j=0}^{2^i}|x_{i,j}|^p2^{-i\,p} \biggr)^{q/p} \right)^{1/q} . $$ If $0<\alpha<\tilde{\alpha}<\infty$ and $\|x\|_{\tilde{\alpha},p,q}<\infty$ then were can I find estimates on the tail-sum $$ \sum_{i=I}^{\infty} 2^{\alpha i p} \biggl( \sum_{j=0}^{2^i}|x_{i,j}|^p2^{-i\,p} \biggr)^{q/p} $$ representing the norm $\|\cdot\|_{\alpha,p,q}$ of the approximation of $x$ by $(x_{i,j})_{i=0,j=0,\dots,2^i}^I$.