0
$\begingroup$

Let $x:=(x_{i,j})_{i\in \mathbb{N},\, j=0,\dots,2^i}$ be a real-sequence and consider the (small) Besov-type sequence spaces with quasi-norms for $0<q,p,\alpha< \infty$ $$ \|x\|_{\alpha,p,q} := \left( \sum_{i=0}^{\infty} 2^{\alpha i p} \biggl( \sum_{j=0}^{2^i}|x_{i,j}|^p2^{-i\,p} \biggr)^{q/p} \right)^{1/q} . $$ If $0<\alpha<\tilde{\alpha}<\infty$ and $\|x\|_{\tilde{\alpha},p,q}<\infty$ then were can I find estimates on the tail-sum $$ \sum_{i=I}^{\infty} 2^{\alpha i p} \biggl( \sum_{j=0}^{2^i}|x_{i,j}|^p2^{-i\,p} \biggr)^{q/p} $$ representing the norm $\|\cdot\|_{\alpha,p,q}$ of the approximation of $x$ by $(x_{i,j})_{i=0,j=0,\dots,2^i}^I$. What I'm basically asking is can we do better than $$ \label{1} \tag{1} \sum_{i=I}^{\infty} 2^{\alpha i p} \biggl( \sum_{j=0}^{2^i}|x_{i,j}|^p2^{-i\,p} \biggr)^{q/p} \lesssim \sum_{i=I}^{\infty} 2^{(\alpha-1) i p} 2^{(1-\tilde{\alpha})ip} = \frac{2^{(\alpha - \tilde{\alpha})p I}}{1 - 2^{(\alpha - \tilde{\alpha})p}} \in \mathcal{O}_{p,\alpha,\tilde{\alpha}}\Big( 2^{(-\tilde{\alpha}+\alpha)pI} \Big)? $$


I ask since this estimate is crude in the sense that, I only note that if $\|x\|_{\tilde{\alpha},p,q}<\infty$ then we must have $$ 2^{\alpha i p} \biggl( \sum_{j=0}^{2^i}|x_{i,j}|^p2^{-i\,p} \biggr)^{q/p} <C $$ for some constant $C>0$ not depending on $i$; whence we get the bound $$ \biggl( \sum_{j=0}^{2^i}|x_{i,j}|^p2^{-i\,p} \biggr)^{q/p} \lesssim 2^{-\alpha i p} $$ which is the only thing I used in \eqref{1}.

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.