I define the sequence $\{a_n\}_{n \ge 0}$ by the generating function $$ G(g, \xi) = \sum_{n \ge 0} a_n g^n = \frac{1}{g} \, \frac{4\bar g \, (2\bar g^2 - 3\bar g + \xi/2+1/2)} {(\xi-1) \, (2\bar g - \xi)}, $$ where $\bar g$ satisfies the cubic algebraic equation $$ \frac{\bar g \, (2\bar g - \xi/2 -1/2 )^2} {(2\bar g - 1)(2\bar g - \xi)} = g \, . $$
The first few coefficients (if we expand $G(g, \xi)$ in series and looking at the numerator ) are $ 1,\; 1,\; 4,\; 1,\; 1,\; 10,\; 22,\; 10,\; 1,\; 1,\; 18,\; 88,\; 150,\; 88,\; 18,\; 1,\; \dots $
Question I would like to find a linear recurrence (or linear differencial recurrence) satisfied by the coefficients $a_n$, for example of the general form $$ c_0(n)\,a_n + c_1(n)\,a_{n-1} + \cdots + c_k(n)\,a_{n-k} = 0, $$ where each $c_i(n)$ is a polynomial (or constant) in $n$.
And generation functional meets next functional equation $$G[ g, \xi]= 8- G[ g/\xi , 1/\xi]$$ and differential equation of third order: \begin{eqnarray} g^3 \frac{\partial^3 G}{\partial g^3} +3 g^2 (\xi -1) \frac{\partial^3 G}{ \partial g^2 \partial \xi} +3 g (\xi-1) \xi \frac{\partial^3 G}{ \partial g\partial^2 \xi } +(\xi^2-1) \xi \frac{\partial^3 G}{\partial \xi^3}+ \nonumber \\ +6 \left( g^2 \frac{\partial^2 G}{\partial g^2} +g (2 \xi-1) \frac{\partial^2 G}{ \partial \xi \partial g} + \xi^2 \frac{\partial^2 G}{\partial \xi^2} + g \frac{ \partial G}{\partial g}+ \xi\frac{\partial G}{\partial \xi}\right) =0 \, . \end{eqnarray}
I have derived that $G(g, \xi)$ satisfies a third–order algebraic differential equation, but I was unable to extract from it a closed–form recurrence for $\{a_n\}$. Standard tools for guessing recurrences did not yield a stable result.