1
$\begingroup$

Let $u v\in W^{1,1}(\Omega)$ and consider the gradient functional $$ J(u) = \int_\Omega |\nabla u(x)| \, dx $$ and the perturbation $u_\varepsilon = u + \varepsilon v$, with $\varepsilon > 0$.

  • On the set $A = \{ x \in \Omega \mid \nabla u(x) \neq 0 \}$, we have differentiability, and $$ \frac{1}{\varepsilon} \left( |\nabla u + \varepsilon \nabla v| - |\nabla u| \right) \to \frac{\nabla u}{|\nabla u|} \cdot \nabla v \quad \text{as } \varepsilon \to 0^+ $$

  • On the set $B = \{ x \in \Omega \mid \nabla u(x) = 0 \}$, we have $$ |\nabla u + \varepsilon \nabla v| = \varepsilon |\nabla v| \quad \Rightarrow \quad \frac{|\nabla u + \varepsilon \nabla v| - |\nabla u|}{\varepsilon} = |\nabla v| $$

Therefore, we obtain define the directional derivative $$ \delta J(u)[v] = \lim_{\varepsilon \to 0^+} \frac{J(u + \varepsilon v)-J(u)}{\varepsilon} = \int_{\{\nabla u \ne 0\}} \frac{\nabla u}{|\nabla u|} \cdot \nabla v \, dx + \int_{\{\nabla u = 0\}} |\nabla v| \, dx $$

Question: what about the case $u,v\in BV(\Omega)$

Let now $u,v \in BV(\Omega)$. Recall that the total variation is defined as $$ J(u) = |Du|(\Omega)= \sup \left\{ \int_\Omega u \, \operatorname{div} \phi \, dx : \phi \in C_c^1(\Omega; \mathbb{R}^n),\ |\phi(x)| \leq 1 \right\} $$ where $Du$ is a vector-valued Radon measure.

How we compute $$ \delta J(u)[v] = \lim_{\varepsilon \to 0^+} \frac{|D(u + \varepsilon v)|(\Omega) - |Du|(\Omega)}{\varepsilon} $$

Any reference or answer is welcome.

Recall that for a function $u\in BV(\Omega)$ there is a sequence $u_n\in W^{1,1}(\Omega)$ such that $\|u_n-u\|_{L^1(\Omega)}\to 0$ and $$|D u_n|(\Omega)\to |D u|(\Omega)$$ Moreover, for $u\in W^{1,1}(\Omega)$ we have $u\in BV(\Omega)$ and $$|D u|(\Omega)= \int_\Omega |\nabla u(x)|dx$$

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.