0
$\begingroup$

$ \newcommand{\bR}{\mathbb{R}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bE}{\mathbb{E}} \newcommand{\coloneq}{:=} \newcommand{\colon}{:} \newcommand{\rD}{D} \newcommand{\cF}{\mathcal{F}} \newcommand{\cA}{\mathcal{A}} \newcommand{\diff}{\mathop{}\!\mathrm{d}} \newcommand{\qtext}[1]{\quad\text{#1}} \newcommand{\textq}[1]{\text{#1}\quad} \newcommand{\qtextq}[1]{\quad\text{#1}\quad} $ Let $(B_t)$ be a one-dimensional Brownian motion on a completed filtered probability space $(\Omega, \cA, (\cF_t), \bP)$. We assume that the filtration $(\cF_t)$ is admissible for $(B_t)$. Let $\sigma : \bR \to \bR$ be Lipschitz. We fix a random variable $Y \in L^2 (\cF_0) \coloneq L^2 (\Omega, \cF_0, \bP; \bR)$. Let $\{ X^Y_t : t \ge 0 \}$ be the unique solution to the SDE $$ X^Y_t = Y + \int_0^t \sigma (X^Y_s) \diff B_s . $$

We define the random variable $\tilde X^Y_t$ by $\tilde X^Y_t (\omega) \coloneq X^{Y (\omega)}_t (\omega) \coloneq \{ X^{Y (\omega)}_t \} (\omega)$ for $\omega \in \Omega$.

I would like to ask if there are references containing the following theorem:

Theorem 1 Let $t \in (0, \infty)$. Then $X^Y_s = \tilde X^Y_s$ for all $s \in [0, t]$, $\bP$-a.s.

Thank you for your elaboration. Below is my proof for above theorem.


Let $C_1$ be the Lipschitz constant of $\sigma$. We need the following lemmas

Lemma 2 Assume $Y$ takes a finite number of values $y_1, \ldots, y_n \in \bR$. Let $t \in (0, \infty)$. Then $X^Y_s = \tilde X^Y_s$ for all $s \in [0, t]$, $\bP$-a.s.

Lemma 3 For $(T, p) \in (0, \infty) \times [2, \infty)$, there exists a constant $C_2 = C_2 (T, p, C_1) >0$ such that $$ \bE [ \sup_{s \in [0, t]} |X^Y_s - X^Z_s|^p ] \le C_2 \bE [ |Y-Z|^p ] \qtextq{for all} t \in [0, T] \qtextq{and} Y, Z \in L^p (\cF_0) . $$

Lemma 4 (Kolmogorov Continuity Theorem) Let $(E, \mathrm{d})$ be a Polish space and $S$ a subset of $\bR^d$. Let $\{U_x : x \in S \}$ be a collection of $E$-valued random variables. If $\alpha, \beta, C$ are positive constants satisfying $$ \bE [\mathrm d^\alpha (U_x, U_y) ] \le C |x-y|^{d+\beta} $$ for all $x, y \in S$, then $U_x$ has a continuous modification. Furthermore, with probability one, this modification is almost surely $\gamma$-Hölder continuous on all bounded sets for all $0<\gamma<\beta / \alpha$.

Proof of Theorem 1 Let $(Y_n) \subset L^2$ be a sequence of simple functions such that $Y_n \to Y$ in $L^2$. By Lemma 2, $$ \sup_{s \in [0, t]} | X^{Y_n}_s - \tilde X^{Y_n}_s | = 0 \qtext{$\bP$-a.s.} $$

By Lemma 3, possibly passing to a subsequence, $$ \sup_{s \in [0, t]} | X^{Y_n}_s - X^{Y}_s | \to 0 \qtextq{$\bP$-a.s. as} n \to \infty. $$

By Lemma 4, there exists a modification of $\{ X^y_s : s \in [0, t] \}_{y \in \bR^d}$ such that $y \mapsto \{ X^y_s : s \in [0, t] \}$ is continuous $\bP$-a.s. w.r.t the supremum norm $\| \cdot \|_\infty$ on $C([0, t] ; \bR)$. We will also denote this modification by $\{ X^y_s : s \in [0, t] \}_{y \in \bR^d}$. Possibly passing to a subsequence, we have $Y_n \to Y$ $\bP$-a.s. It follows that $$ \sup_{s \in [0, t]} | \tilde X^{Y_n}_s (\omega) - \tilde X^{Y}_s (\omega) | = \sup_{s \in [0, t]} | X^{Y_n (\omega)}_s (\omega) - X^{Y (\omega)}_s (\omega) | \to 0 \qtext{$\bP$-a.s.} $$

This completes the proof. $$\tag*{$\blacksquare$}$$

Proof of Lemma 2 Let $A_i \coloneq \{\omega \in \Omega : Y(\omega) =y_i\}$. Then $1_{A_i}$ is $\cF_0$-measurable. We have \begin{align} X^Y_t 1_{A_i} & = 1_{A_i} \Big [ Y + \int_0^t \sigma (X^Y_s) \diff B_s \Big ] & = y_i 1_{A_i} + \int_0^t \sigma (X^Y_s) 1_{A_i} \diff B_s , \\ X^{y_i}_t 1_{A_i} & = 1_{A_i} \Big [ y_i + \int_0^t \sigma (X^{y_i}_s) \diff B_s \Big ] & = y_i 1_{A_i} + \int_0^t \sigma (X^{y_i}_s) 1_{A_i} \diff B_s . \end{align}

Step 1: We assume that $\sigma (0) = 0$, so $\sigma (X^Y_s) 1_{A_i} = \sigma (X^Y_s 1_{A_i})$ and $\sigma (X^{y_i}_s) 1_{A_i} = \sigma (X^{y_i}_s 1_{A_i})$. Then \begin{align} X^Y_t 1_{A_i} & = y_i 1_{A_i} + \int_0^t \sigma (X^Y_s 1_{A_i}) \diff B_s , \\ X^{y_i}_t 1_{A_i} & = y_i 1_{A_i} + \int_0^t \sigma (X^{y_i}_s 1_{A_i}) \diff B_s , \end{align} which implies $$ X^Y_t 1_{A_i} - X^{y_i}_t 1_{A_i} = \int_0^t [ \sigma (X^Y_s 1_{A_i}) - \sigma (X^{y_i}_s 1_{A_i}) ] \diff B_s . $$

Thus \begin{align} \bE [ \sup_{s \in [0, t]} |X^Y_s 1_{A_i} - X^{y_i}_s 1_{A_i}|^2 ] & \le \bE \Big [ \sup_{s \in [0, t]} \Big | \int_0^s [ \sigma (X^Y_r 1_{A_i}) - \sigma (X^{y_i}_r 1_{A_i}) ] \diff B_r \Big |^2 \Big ] \\ & \le C_3 \bE \Big [ \int_0^t | \sigma (X^Y_r 1_{A_i}) - \sigma (X^{y_i}_r 1_{A_i})|^2 \diff r \Big ] \\ & = C_3 \int_0^t \bE [ | \sigma (X^Y_r 1_{A_i}) - \sigma (X^{y_i}_r 1_{A_i})|^2 ] \diff r \\ & \le C_1 C_3 \int_0^t \bE [ | X^Y_r 1_{A_i} - X^{y_i}_r 1_{A_i}|^2 ] \diff r \\ & \le C_1 C_3 \int_0^t \bE [ \sup_{s \in [0, r]} | X^Y_s 1_{A_i} - X^{y_i}_s 1_{A_i}|^2 ] \diff r . \end{align}

The constant $C_3$ is due to Burkholder-Davis-Gundy inequality. Let $$ f_i (t) \coloneq \bE [ \sup_{s \in [0, t]} |X^Y_s 1_{A_i} - X^{y_i}_s 1_{A_i}|^2 ] \qtextq{for} t \ge 0. $$

Then $t \mapsto f_i (t)$ is continuous. By Gronwall's lemma $f_i (t) =0$ for all $t \ge 0$. Notice that $\tilde X^Y_t 1_{A_i} = X^{y_i}_t 1_{A_i}$. The claim then follows.

Step 2 We define $\tilde \sigma : \bR \to \bR$ by $\tilde \sigma (x) \coloneq \sigma (x) - \sigma (0)$. Then $\tilde \sigma$ is Lipschitz and $\tilde \sigma (0) = 0$. Also, \begin{align} X^Y_t 1_{A_i} & = y 1_{A_i} + \sigma (0) \int_0^t 1_{A_i} \diff B_s + \int_0^t \tilde \sigma (X^Y_s 1_{A_i}) \diff B_s , \\ X^{y_i}_t 1_{A_i} & = {y_i} 1_{A_i} + \sigma (0) \int_0^t 1_{A_i} \diff B_s + \int_0^t \tilde \sigma (X^{y_i}_s 1_{A_i}) \diff B_s . \end{align}

Repeating the procedure in Step 1 completes the proof. $$\tag*{$\blacksquare$}$$

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.