Let $A$ be the $K$-algebra defined as the quotient of the non-commutative polynomial ring in variables a,b,c,d,e,f,g,h,z modulo the relations
[ (1)*a^2, (1)*a*b+(1)*b*a, (1)*b^2, (1)*a*c+(1)*c*a, (1)*b*c+(1)*c*b, (1)*c^2, (1)*a*d+(1)*d*a, (1)*c*d+(1)*d*c, (1)*d^2, (1)*a*e+(1)*e*a, (1)*b*e+(1)*e*b, (1)*c*e+(1)*e*c, (1)*d*e+(1)*e*d, (1)*e^2, (1)*a*f+(1)*f*a, (1)*b*d+(1)*b*f+(1)*d*b+(1)*f*b, (1)*c*f+(1)*f*c, (1)*d*f+(1)*f*d, (1)*e*f+(1)*f*e, (1)*f^2, (1)*a*g+(1)*g*a, (1)*b*g+(1)*g*b, (1)*c*g+(1)*g*c, (1)*d*g+(1)*g*d, (1)*e*g+(1)*g*e, (1)*f*g+(1)*g*f, (1)*g^2, (1)*h*g, (1)*a*h+(1)*h*a, (1)*b*h+(1)*h*b, (1)*c*h+(1)*h*c, (1)*d*h+(1)*h*d, (1)*e*h+(1)*h*e, (1)*f*h+(1)*h*f, (1)*g*h, (1)*h^2, (1)*a*z+(1)*b*d+(1)*d*b+(1)*f*b+(-2)*g*a+(1)*h*a+(1)*z*a, (-1)*c*b+(1)*d*z+(1)*g*d+(-2)*h*d+(1)*z*d, (1)*b*z+(1)*d*a+(1)*e*z+( -1)*f*c+(-1)*g*b+(1)*g*e+(-1)*h*b+(1)*h*e+(1)*z*b+(1)*z*e, (-1)*e*a+(1)*f*z+(-1)*g*f+(2)*h*f+(1)*z*f, (1)*c*a+(1)*e*b+(1)*g*z+( 1)*z*g, (1)*e*b+(1)*f*d+(1)*h*z+(1)*z*h, (1)*z^2 ] Question: Is there a computer algebra system (or modern AI methods) that can compute whether $A$ is finite dimensional and give the vector space dimension+Loewy length of $A$ and its center in case it is finite dimensional?
I tried using GAP/QPA, but it did not finish the computation in a reasonable time. Also Magma could not do it.