0
$\begingroup$

Suppose you have the following integral

$$V_{pq}(t):=\int_{\mathbb{R}^3}\frac{\chi_p(x,t)\chi_q(x,t)}{\|x-R_c(t)\|}\mathrm{d}x,$$

where $\chi_p(x,t):= (x_1-R_{p,x_1}(t))^\ell(x_2-R_{p,x_2}(t))^m(x_3-R_{p,x_3}(t))^ue^{-\|x-R_p(t)\|²}$ and $\chi_q(x,t):= (x_1-R_{q,x_1}(t))^n(x_2-R_{q,x_2}(t))^v(x_3-R_{q,x_3}(t))^se^{-\|x-R_q(t)\|²}$, with $\ell, m, u, n, v, s \in \mathbb{N}$, $(x_1,x_2,x_3)=x, (R_{j,x_1}(t),R_{j,x_2}(t),R_{j,x_3}(t))=R_j(t)$ and $t\mapsto R_c(t), t\mapsto R_q(t), t\mapsto R_p(t)$ are all smooth curves from an shared bounded interval $I$ into $\mathbb{R}^3$.

Is $V_{pq}:I \longrightarrow \mathbb{R}$ under certain conditions on the curves a smooth function?

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.