Assume that \begin{align*} \pi_p &= \frac{2}{p} \int_0^1 \left[ u^{1-p} + (1-u)^{1-p} \right]^{1/p} \mathrm{d}u \end{align*}
How to prove that if $\frac{1}{p} +\frac{1}{q}=1$ then $\pi_p=\pi_q$?
Assume that \begin{align*} \pi_p &= \frac{2}{p} \int_0^1 \left[ u^{1-p} + (1-u)^{1-p} \right]^{1/p} \mathrm{d}u \end{align*}
How to prove that if $\frac{1}{p} +\frac{1}{q}=1$ then $\pi_p=\pi_q$?
Using the substitution $u=x^p$ and the symmetry of your integrand wrt the reflection $u\leftrightarrow1-u$, one sees that your $\pi_p$ is the "value of $\pi$ in $\ell_p$" as expressed in formula (3) of this paper, where it is shown that indeed $\pi_p=\pi_q$ if $p>1$ and $\frac1p+\frac1q=1$.