I am investigating the following integral over the unit sphere $\mathbb{S}^{N-1}$:
$ I(n, m) = \int_{\mathbb{S}^{N-1}} (1 + \langle u, x \rangle)^n (1 + \langle v, x \rangle)^m \, d\omega(x), $
where: $u, v \in \mathbb{S}^{N-1}$ are fixed unit vectors, $n, m \in \mathbb{N}$, $d\omega(x)$ is the standard surface measure on the sphere. Does there exist a $\textbf{closed-form expression}$ for $I(n, m)$ for general exponents $n, m$ in terms of special functions (e.g., hypergeometric functions, Gegenbauer polynomials)?