3
$\begingroup$

I am investigating the following integral over the unit sphere $\mathbb{S}^{N-1}$:

$ I(n, m) = \int_{\mathbb{S}^{N-1}} (1 + \langle u, x \rangle)^n (1 + \langle v, x \rangle)^m \, d\omega(x), $

where: $u, v \in \mathbb{S}^{N-1}$ are fixed unit vectors, $n, m \in \mathbb{N}$, $d\omega(x)$ is the standard surface measure on the sphere. Does there exist a $\textbf{closed-form expression}$ for $I(n, m)$ for general exponents $n, m$ in terms of special functions (e.g., hypergeometric functions, Gegenbauer polynomials)?

$\endgroup$
1
  • 1
    $\begingroup$ if you expand the integrand in powers of $\langle u,x\rangle$ and $\langle v,x\rangle$, you end up with a sum of integrals of monomials over the unit sphere, each of which has a closed form expression $\endgroup$ Commented May 16 at 9:53

1 Answer 1

2
$\begingroup$

Without loss of generality we can assume $m\geq n$ and take $v=(1,0,0,\ldots 0)$ and $u=(\cos\phi,\sin\phi,0,0,\ldots 0)$, so $$I(n,m)=\int_{S^{N-1}}(1+x_1\cos\phi+x_2\sin\phi)^n(1+x_1)^m\,dS.$$ I expand $$(1+x_1\cos\phi+x_2\sin\phi)^n(1+x_1)^m=\sum_{r=0}^{n+m}\sum_{s=0}^n C_{r,s}x_1^r x_2^s,$$ $$C_{r,s}=\sum_{j =0}^{\min(r, n - s)} \binom{n}{j + s} \binom{j + s}{j} \binom{m}{r - j} \cos^j\phi \sin^s\phi$$ $$\qquad = \binom{m}{r} \binom{n}{s} \, _2F_1(-r,s-n;m-r+1;\cos \phi)\sin ^s\phi.$$ Only even $r,s$ give a nonzero contribution to the integral over the unit sphere. For even $r,s$ one has the result $$\int_{S^{N-1}}\prod_{i=1}^{N}x_i^{m_i}\,dS=\frac{\prod_{i=1}^N(m_i-1)!!(N-2)!!}{(\sum_{i=1}^N m_i+N-2)!!}$$ $$\Rightarrow \int_{S^{N-1}}x_1^r x_2^s\,dS=\frac{(r-1)!!(s-1)!!(N-2)!!}{(r+s+N-2)!!},$$ hence $$I(n,m)={\sum'}_{r=0}^{n+m}{\sum'}_{s=0}^n C_{r,s}\frac{(r-1)!!(s-1)!!(N-2)!!}{(r+s+N-2)!!},$$ where $\sum'$ means that only even numbers contribute.
There may well be a way to simplify this further.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.