4
$\begingroup$

I am trying to determine the asymptotic behavior (as $n \to \infty$) of the quantity \begin{equation*} \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{(1+k)^r}, \end{equation*} for any $r > 0$.

Notice that in the case where $r$ is a positive integer we have \begin{equation*} \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{(1+k)^r} \sim \frac{1}{\Gamma(r)} \frac{(\ln n)^{r-1}}{n+1}. \end{equation*} This formula follows by differentiating $r-1$ times with respect to $z$ the equation \begin{equation*} \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{z+k} = n!\prod_{k=0}^n (z+k)^{-1}. \end{equation*}

$\endgroup$

1 Answer 1

9
$\begingroup$

$\newcommand\Ga\Gamma$Using the formula $$\frac1{(1+k)^r}=\frac1{\Ga(r)}\int_0^\infty dx\,x^{r-1}e^{-(1+k)x}$$ and then the substitution $v=-\ln(1-e^{-x})$, we get \begin{equation} s_{n,r}:=\sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{(1+k)^r} =\frac1{\Ga(r)}\, I_{n,r}, \end{equation} where, with $m:=n+1$, \begin{equation} I_{n,r}:=\int_0^\infty dv\,g(v)^{r-1} e^{-mv}=I_{n,r,1}+I_{n,r,2}, \end{equation} \begin{equation} I_{n,r,1}:=\int_0^{1/\sqrt m} dv\,g(v)^{r-1} e^{-mv},\quad I_{n,r,2}:=\int_{1/\sqrt m}^\infty dv\,g(v)^{r-1} e^{-mv}, \end{equation} \begin{equation} g(v):=-\ln(1-e^{-v}). \end{equation}

Note that $g$ is decreasing from $\infty$ to $0$ on $(0,\infty)$, \begin{equation} g(v)\underset{v\downarrow0}\sim-\ln v,\quad g(v)\underset{v\to\infty}\sim e^{-v}, \end{equation} \begin{equation} 0<v\le1\implies g(v)\le-\ln(c v)=|\ln c|+|\ln v|, \end{equation} where $c:=1-e^{-1}$, \begin{equation} v>0\implies g(v)\ge-\ln v. \end{equation}

It follows that $g(v)^{r-1}=O(\ln^{|r-1|}m+e^{|r-1|v})$ for $v>1$ and hence \begin{equation} I_{n,r,2}=O(e^{-\sqrt m}\ln^{|r-1|}m). \end{equation}

Next, \begin{equation} I_{n,r,1}=\frac1m\int_0^{\sqrt m} du\,g(u/m)^{r-1} e^{-u}, \end{equation} and, for $u\in(0,\sqrt m)$, \begin{equation} 0<g(u/m)^{r-1}\le(-\ln(u/m))^{r-1}\le2^{1-r}\ln^{r-1}m \end{equation} if $0<r\le1$, and \begin{equation} 0<g(u/m)^{r-1}\le(|\ln c|+|\ln(u/m)|)^{r-1}=O(|\ln c|^{r-1}+|\ln u|^{r-1}+\ln^{r-1}m) \end{equation} if $r>1$. Also, for each real $u>0$ we have $g(u/m)\sim -\ln(u/m)\sim\ln m$ (as $n\to\infty$).

So, by dominated convergence, \begin{equation} I_{n,r,1} \sim\frac1m\int_0^{\sqrt m} du\,\ln^{r-1}m\, e^{-u}\sim\frac1m\,\ln^{r-1}m \end{equation} and thus \begin{equation} s_{n,r}\sim\frac1{\Ga(r)}\frac{(\ln n)^{r-1}}n \end{equation} for each real $r>0$, just as what you got for natural $r$.

$\endgroup$
12
  • $\begingroup$ where is $k$ on the RHS in your first formula? $\endgroup$ Commented Feb 19 at 15:31
  • $\begingroup$ @mathworker21 : This typo is now fixed. Thank you. $\endgroup$ Commented Feb 19 at 15:33
  • $\begingroup$ I have added details concerning dominated convergence. $\endgroup$ Commented Feb 19 at 22:44
  • $\begingroup$ Nice! Basically $I_{n,r}$ is a Laplace integral. $\endgroup$ Commented Feb 20 at 15:47
  • 1
    $\begingroup$ Sorry, I've just realized I had to click on the check mark! $\endgroup$ Commented Feb 27 at 20:47

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.