Let me attempt to answer my own question. After doing some related work, I believe I have found a satisfying framework, which, while not fundamentally new, gives a robust recipe for encoding "rational generating functions" and recover the common operations like inner product, skewing operator, and Kronecker products, "as a whole", without expanding into any basis. The essential ingredients are present in first chapter of Macdonald’s Symmetric Functions and Hall Polynomials [1] and are implicitly present in many papers, but what appears to be never emphasized enough is recognizing that a few identities suffice to handle many rationality statements without invoking any particular basis or deeper combinatorics when not necessary.
See also [1], p. 91, Ex. 25, and p. 95, Ex. 29.
Notation
- A bold letter (e.g., $\mathbf{x}$) denotes a countably infinite alphabet $(x_1, x_2, \dots)$, while a plain letter (e.g., $t$) denotes $(t,0,0,\dots)$.
- The notation $\mathbf{x}\mathbf{y}$ stands for the set $\{x_i y_j\}_{i,j \geq 1}$, and the notation $\mathbf{x},\mathbf{y}$ stands for $\{x_i, y_i\}_{i\geq 1}$.
- Define the Cauchy kernel: $$ \mathcal{H}(\mathbf{x}) := \prod_{i \geq 1} \frac{1}{1 - x_i} = \sum_{n\geq 0} h_n(\mathbf{x}). $$
- For example, Cauchy identity (in monomial/homogeneous basis) is: $$ \mathcal{H}(\mathbf{x} \mathbf{y}) = \sum_{\lambda} m_\lambda(\mathbf{x}) h_\lambda(\mathbf{y}). $$
Operators:
- $\langle -,- \rangle$ is the Hall inner product on $\Lambda$.
- $f^\perp$ denotes the adjoint of multiplication by $f$ with respect to this inner product.
- $f \ast g$ denotes the Kronecker product (tensor product of $S_n$-representations under Frobenius characteristic).
If multiple alphabets are involved, we clarify the variable involved by subscript, e.g., $\langle f(\mathbf{x}), g(\mathbf{x})h(\mathbf{y}) \rangle_{\mathbf{x}}=\langle f,g\rangle h(\mathbf{y})$.
Key Formulas (to be proved at the end)
Let $f, g \in \Lambda$:
- Skewing by $\mathcal{H}$: $$ \mathcal{H}(\mathbf{x}\mathbf{y})^{\perp_{\mathbf{x}}} f(\mathbf{x}) = f(\mathbf{x}, \mathbf{y}). $$
- General skewing: $$ f(\mathbf{x})^{\perp_{\mathbf{x}}} g(\mathbf{x}) = \langle f(\mathbf{x}), g(\mathbf{x}, \mathbf{y}) \rangle_{\mathbf{y}}. $$
- Kronecker product with $\mathcal{H}$: $$ \mathcal{H}(\mathbf{x} \mathbf{y}) \ast_{\mathbf{x}} f(\mathbf{x}) = f(\mathbf{x} \mathbf{y}). $$
- General Kronecker product: $$ f(\mathbf{x}) \ast_{\mathbf{x}} g(\mathbf{x}) = \langle f(\mathbf{y}), g(\mathbf{x} \mathbf{y}) \rangle_{\mathbf{y}}. $$
Easy observations:
- $\mathcal{H}(\mathbf{x}, \mathbf{y}) = \mathcal{H}(\mathbf{x}) \cdot \mathcal{H}(\mathbf{y})$.
- $\langle f(\mathbf{x}), 1 \rangle_{\mathbf{x}} = f(0)$ (evaluation at all variables zero).
Methodology
When computing a Kronecker product, especially for generating functions like $\sum_n a_n \ast b_n$, the strategy is:
- Express generating functions as something like $\mathcal{H}(\mathbf{x}; \mathbf{y}) \cdot f(\mathbf{x})$.
- Play with the identities above. They will be robust enough, see the next example.
Example 1:
Let $f, g \in \Lambda$. Consider: $$ f(\mathbf{x}) \mathcal{H}(\mathbf{x} \mathbf{y}) \ast_{\mathbf{x}} g(\mathbf{x}) \mathcal{H}(\mathbf{x} \mathbf{z}). $$
Apply Formula 4: $$ = \left\langle f(\mathbf{w}) \mathcal{H}(\mathbf{w} \mathbf{y}),\ g(\mathbf{x} \mathbf{w}) \mathcal{H}(\mathbf{x} \mathbf{w} \mathbf{z}) \right\rangle_{\mathbf{w}}. $$
To remove the factors involving the infinite product $\mathcal H$, we move it to the other side using adjointness: $\langle f,gh\rangle = \langle h^\perp f, g\rangle$, and apply Formula 1 to simplify the skewing: $$ = \left\langle f(\mathbf{w}, \mathbf{x} \mathbf{z}) \cdot \mathcal{H}(\mathbf{w} \mathbf{y}, \mathbf{x} \mathbf{y} \mathbf{z}),\ g(\mathbf{x} \mathbf{w}) \right\rangle_{\mathbf{w}}. $$
Factor out $\mathcal{H}(\mathbf{x} \mathbf{y} \mathbf{z})$, which is independent of $\mathbf{w}$: $$ = \mathcal{H}(\mathbf{x} \mathbf{y} \mathbf{z}) \cdot \left\langle f(\mathbf{w}, \mathbf{x} \mathbf{z}) \cdot \mathcal{H}(\mathbf{w} \mathbf{y}),\ g(\mathbf{x} \mathbf{w}) \right\rangle_{\mathbf{w}}. $$
Repeat Formula 1 again: $$ = \mathcal{H}(\mathbf{x} \mathbf{y} \mathbf{z}) \cdot \left\langle f(\mathbf{w}, \mathbf{x} \mathbf{z}),\ g(\mathbf{x} \mathbf{w}, \mathbf{x} \mathbf{y}) \right\rangle_{\mathbf{w}}. $$
So the product is a finite symmetric function times a “pole” $\mathcal{H}(\mathbf{x} \mathbf{y} \mathbf{z})$.
Example 2:
As a toy example to illustrate the method, say we want to know the Frobenius character of $\mathbb{C}^n \otimes \mathbb{C}^n$, where $\mathbb{C}^n$ is the tautological $S_n$ representation. Let's do it in a mechanical way so that we know for sure that this sequence is "stable", and the generating function has Schur positive numerator, without having any prior insights from representation theory or combinatorics.
Let $\{a_n\}$ be the Frobenius character of $\mathbb{C}^n$. Define: $$ A(\mathbf{x}) = \sum_{n \geq 1} a_n(\mathbf{x}) = s_1(\mathbf{x}) \cdot \mathcal{H}(\mathbf{x}). $$ (from Pieri rule).
Now compute the generating function for $a_n \ast a_n$. Note that $a_n\ast a_m=0$ if $m\neq n$ by homogeneity, so: $$ (\sum_{n} a_n \ast a_n)(\mathbf{x})=A(\mathbf{x}) \ast A(\mathbf{x}) = s_1(\mathbf{x}) \mathcal{H}(\mathbf{x}) \ast_{\mathbf{x}} s_1(\mathbf{x}) \mathcal{H}(\mathbf{x}). $$
Apply Example 1 with $\mathbf{y}=\mathbf{z}=1:=(1,0,0,\dots)$: $$ (\sum_{n} a_n \ast a_n)(\mathbf{x})= \mathcal{H}(\mathbf{x}) \cdot \left\langle s_1(\mathbf{w}, \mathbf{x}),\ s_1(\mathbf{x} \mathbf{w}, \mathbf{x}) \right\rangle_{\mathbf{w}}. $$
Explicitly compute:
- $s_1(\mathbf{w}, \mathbf{x}) = s_1(\mathbf{w}) + s_1(\mathbf{x})$,
- $s_1(\mathbf{x} \mathbf{w}, \mathbf{x}) = s_1(\mathbf{x}) s_1(\mathbf{w}) + s_1(\mathbf{x})$.
So: $$ (\sum_{n} a_n \ast a_n)(\mathbf{x})= \mathcal{H}(\mathbf{x}) \cdot \left(s_1(\mathbf{x})^2 + s_1(\mathbf{x})\right) = \mathcal{H}(\mathbf{x}) \cdot \left(s_2(\mathbf{x}) + s_{1,1}(\mathbf{x}) + s_1(\mathbf{x})\right). $$
The next example shows that it is easy to extract numerical information from the generating function above without unpackaging.
Example 3: The dimension of $(\mathbb{C}^n\otimes \mathbb{C}^n)^{S_n}$
Compute generating function: $$ \sum_n \langle a_n \ast a_n,\ h_n \rangle t^n = \left\langle \sum a_n(\mathbf{x}) \ast a_n(\mathbf{x}),\ \sum h_n(\mathbf{x}) t^n \right\rangle_{\mathbf{x}}. $$
From above: $$ \sum_n \langle a_n \ast a_n,\ h_n \rangle t^n= \left\langle \mathcal{H}(\mathbf{x})(s_1^2 + s_1)(\mathbf{x}),\ \mathcal{H}(\mathbf{x} t) \right\rangle_{\mathbf{x}}. $$
Using $$ \langle \mathcal{H}(\mathbf{x} \cdot \mathbf{y}),\ f(\mathbf{x}) \rangle_{\mathbf{x}} = f(\mathbf{y}), $$ (an easy fact, which can also be extracted from Formula 1 and Observation 6) we get: $$ \sum_n \langle a_n \ast a_n,\ h_n \rangle t^n = \mathcal{H}(t)(s_1^2 + s_1)(t) = \frac{t^2 + t}{1 - t}. $$
Appendix: Proofs of Formulas
- Extract the $s_\lambda(\mathbf{z})$ coefficients of [1], p. 71, (a)(b) to prove the case $f=s_\lambda$, and then apply linearity for general $f$.
- For the case $f=s_\lambda$, extract the $s_\lambda(\mathbf{y})$ coefficient of Formula 1. Then apply linearity.
- This is [1], p. 116, (7.11).
- Extract the $s_\lambda(\mathbf{y})$ coefficient of Formula 3.
[1]: Macdonald’s Symmetric Functions and Hall Polynomials