A relevant integral formula can be found in paragraph 13.32 (Generalizations of Weber's second exponential integral) of
Watson, G. N., A treatise on the theory of Bessel functions., Cambridge: University Press (1922). ZBL50.0264.01.
for the bessel function $J_\alpha(x)$ of the first kind. Expressing the modified bessel functions $I_\alpha(x) = i^{-\alpha}J_\alpha(ix)$ and $K_\alpha(x) = \frac{\pi}{2}\frac{i^{-\alpha}J_\alpha(i x)-i^{\alpha}J_{-\alpha}(ix)}{\sin \alpha \pi}$, it provides the more general result
\begin{align} &\int_0^\infty k^{l+1}e^{-p^2k^2}I_\mu(k) K_\nu(k)\mathrm{d}k = \\ &\frac{\pi}{\sin \nu \pi} \frac{2^{-\mu +\nu -2} \Gamma \left(\frac{l+\mu -\nu +2}{2}\right) p^{-l-\mu +\nu -2}}{\Gamma (\mu +1) \Gamma (1-\nu )} \, _3F_3\left(\frac{\mu-\nu+1}{2},\frac{\mu-\nu+2}{2},\frac{l+\mu -\nu+2 }{2};\mu +1,1-\nu ,\mu -\nu +1;\frac{1}{p^2}\right)\\ &-\frac{\pi}{\sin \nu \pi}\frac{2^{-\mu -\nu -2} \Gamma \left(\frac{l+\mu +\nu +2}{2}\right) p^{-l-\mu -\nu -2} }{\Gamma (\mu +1) \Gamma (\nu +1)}\, _3F_3\left(\frac{\mu +\nu +1}{2},\frac{\mu +\nu +2}{2},\frac{l+\mu+\nu+2 }{2};\mu +1,\nu +1,\mu +\nu +1;\frac{1}{p^2}\right). \end{align} The second integral can be approached similarly.