3
$\begingroup$

I am a physicist working on a problem where the following integrals are concerned:

$$\int_0^\infty k^{l+1} e^{-p^2k^2}I_\mu(k)K_{l-\mu}(k) \, dk$$

$$\int_0^\infty k^{l+1} e^{-p^2k^2}(K_\mu(k))^2 \, dk,$$

such that $\mu, p \in \mathbb{R}$, $l\in\mathbb{N}^+$, $I_\mu(k)$ is the modified bessel function of the first kind and $K_\mu(k)$ is that of the second kind.

When $l=0$ this integral has a closed form as can be found here. I wonder for integers $l\geq 1$, which should be a straightforward generalization, if it also admits a closed form.

$\endgroup$

2 Answers 2

6
$\begingroup$

A relevant integral formula can be found in paragraph 13.32 (Generalizations of Weber's second exponential integral) of

Watson, G. N., A treatise on the theory of Bessel functions., Cambridge: University Press (1922). ZBL50.0264.01.

for the bessel function $J_\alpha(x)$ of the first kind. Expressing the modified bessel functions $I_\alpha(x) = i^{-\alpha}J_\alpha(ix)$ and $K_\alpha(x) = \frac{\pi}{2}\frac{i^{-\alpha}J_\alpha(i x)-i^{\alpha}J_{-\alpha}(ix)}{\sin \alpha \pi}$, it provides the more general result

\begin{align} &\int_0^\infty k^{l+1}e^{-p^2k^2}I_\mu(k) K_\nu(k)\mathrm{d}k = \\ &\frac{\pi}{\sin \nu \pi} \frac{2^{-\mu +\nu -2} \Gamma \left(\frac{l+\mu -\nu +2}{2}\right) p^{-l-\mu +\nu -2}}{\Gamma (\mu +1) \Gamma (1-\nu )} \, _3F_3\left(\frac{\mu-\nu+1}{2},\frac{\mu-\nu+2}{2},\frac{l+\mu -\nu+2 }{2};\mu +1,1-\nu ,\mu -\nu +1;\frac{1}{p^2}\right)\\ &-\frac{\pi}{\sin \nu \pi}\frac{2^{-\mu -\nu -2} \Gamma \left(\frac{l+\mu +\nu +2}{2}\right) p^{-l-\mu -\nu -2} }{\Gamma (\mu +1) \Gamma (\nu +1)}\, _3F_3\left(\frac{\mu +\nu +1}{2},\frac{\mu +\nu +2}{2},\frac{l+\mu+\nu+2 }{2};\mu +1,\nu +1,\mu +\nu +1;\frac{1}{p^2}\right). \end{align} The second integral can be approached similarly.

$\endgroup$
2
$\begingroup$

for what it's worth, Mathematica gives a closed-form expression in terms of a hypergeometric function: $$\int_{0}^{\infty} k^{\ell+1} e^{-p^2k^2}(K_{\mu}(k))^2\,dk=$$ $$\mu^{-1}2^{-2 \mu-3} p^{-\ell-2 \mu-2} \left[\mu \Gamma (-\mu)^2 \Gamma \left(\frac{\ell}{2}+\mu+1\right) \, _2F_2\left(\mu+\frac{1}{2},\frac{\ell}{2}+\mu+1;\mu+1,2 \mu+1;\frac{1}{p^2}\right)+16^{\mu} \mu p^{4 \mu} \Gamma (\mu)^2 \Gamma \left(\frac{\ell}{2}-\mu+1\right) \, _2F_2\left(\frac{1}{2}-\mu,\frac{\ell}{2}-\mu+1;1-2 \mu,1-\mu;\frac{1}{p^2}\right)-4^\mu \pi l \Gamma \left(\frac{\ell}{2}\right) p^{2 \mu}\frac{1}{ \sin \pi \mu} \, _2F_2\left(\frac{1}{2},\frac{\ell}{2}+1;1-\mu,\mu+1;\frac{1}{p^2}\right)\right],$$ for $p>0$, $\ell>2|\mu|-2$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.