Let $E$ be a complex Hilbert space and $K_1,K_2$ are bounded linear operators on $E$.
Let $\omega(K_1)$ and $\omega(K_2)$ be the numerical radius of $K_1$ and $K_2$ respectively. That is \begin{align*} \omega(K_i) = \sup\Big\{|{\langle K_ix, x\rangle}|:\, \, x\in E, {\|x\|}= 1\Big\},\quad i=1,2. \end{align*}
Let $$\|(K_1,K_2)\|:=\sup\Big\{|{\langle K_1x, y\rangle}|^2+|{\langle K_2x, y\rangle}|^2:\, \, x,y\in E, {\|x\|}={\|y\|}= 1\Big\}.$$
I want to find prove whether or not the following inequality $$\omega(K_1)^2+\omega(K_2)^2\leq \|(K_1,K_2)\|,$$ holds.
It's clear that \begin{align*} \|(K_1,K_2)\| & \geq |{\langle K_1x, y\rangle}|^2+|{\langle K_2x, y\rangle}|^2, \end{align*} for all $x,y\in E, {\|x\|}={\|y\|}= 1$. In particular
\begin{align*} \|(K_1,K_2)\| & \geq |{\langle K_1x, x\rangle}|^2+|{\langle K_2x, x\rangle}|^2, \end{align*} for all $x\in E, {\|x\|}= 1$.