0
$\begingroup$

Let $E$ be a complex Hilbert space and $K_1,K_2$ are bounded linear operators on $E$.

Let $\omega(K_1)$ and $\omega(K_2)$ be the numerical radius of $K_1$ and $K_2$ respectively. That is \begin{align*} \omega(K_i) = \sup\Big\{|{\langle K_ix, x\rangle}|:\, \, x\in E, {\|x\|}= 1\Big\},\quad i=1,2. \end{align*}

Let $$\|(K_1,K_2)\|:=\sup\Big\{|{\langle K_1x, y\rangle}|^2+|{\langle K_2x, y\rangle}|^2:\, \, x,y\in E, {\|x\|}={\|y\|}= 1\Big\}.$$

I want to find prove whether or not the following inequality $$\omega(K_1)^2+\omega(K_2)^2\leq \|(K_1,K_2)\|,$$ holds.

It's clear that \begin{align*} \|(K_1,K_2)\| & \geq |{\langle K_1x, y\rangle}|^2+|{\langle K_2x, y\rangle}|^2, \end{align*} for all $x,y\in E, {\|x\|}={\|y\|}= 1$. In particular

\begin{align*} \|(K_1,K_2)\| & \geq |{\langle K_1x, x\rangle}|^2+|{\langle K_2x, x\rangle}|^2, \end{align*} for all $x\in E, {\|x\|}= 1$.

$\endgroup$

1 Answer 1

4
$\begingroup$

$\newcommand\C{\Bbb C}\newcommand\om{\omega}$A counterexample is given by $E=\mathbb C^2$ and $K_1(x_1,x_2)=(x_1,0)$ and $K_2(x_1,x_2)=(0,x_2)$ for complex $x_1,x_2$.

Indeed, then $\om(K_1)=\om(K_2)=1=\|(K_1,K_2)\|$.

$\endgroup$
2
  • $\begingroup$ Please why $1=\|(K_1,K_2)\|$? I think it's $2$. Thanks $\endgroup$ Commented Apr 19, 2024 at 12:14
  • $\begingroup$ @Student : Because (for these $K_1$ and $K_2$) $\|(K_1,K_2)\|$ is the supremum of $|x_1|^2|y_1|^2+|x_2|^2|y_2|^2$ given $|x_1|^2+|x_2|^2=1$ and $|y_1|^2+|y_2|^2=1$, so that $|x_1|^2|y_1|^2+|x_2|^2|y_2|^2\le|x_1|^2+|x_2|^2=1$. $\endgroup$ Commented Apr 19, 2024 at 13:13

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.