5
$\begingroup$

I tried to find an inverse Laplace transform by series as follows $$ f(t)=L^{-1}_s\left(e^{-\sqrt{s}}\right)(t)=L^{-1}_s\left(\sum_{k=0}^{\infty}\frac{(-1)^k}{k!} s^{\frac{k}{2}}\right)(t)$$ and by separate even orders with odd orders and get $$ f(t)=L^{-1}_s\left(\sum_{k=0}^{\infty}\frac{(-1)^{2k}}{(2k)!} s^{k}+\sum_{k=0}^{\infty}\frac{(-1)^{2k+1}}{(2k+1)!} s^{k+\frac{1}{2}}\right)(t)$$ then $$ f(t)=L^{-1}_s\left(\sum_{k=0}^{\infty}\frac{s^k}{(2k)!}\right)-\sum_{k=0}^{\infty}\frac{1}{(2k+1)!} \frac{1}{\Gamma\left(-k-\frac{1}{2}\right)t^{k+\frac{3}{2}}} $$ now its easy to evaluate the series $$ f(t)=L^{-1}_s\left(\cosh\left(\sqrt{s}\right)\right)+\frac{t^{-\frac{3}{2}}}{2\sqrt{\pi}}e^{-\frac{1}{4t}} $$ now I know the result is only $$\frac{t^{-\frac{3}{2}}}{2\sqrt{\pi}}e^{-\frac{1}{4t}} $$ So is the Laplace transform of $\cosh\left(\sqrt{s}\right)$ is zero ? and what if we use this way $$ L^{-1}_s\left(\cosh\left(\sqrt{s}\right)\right)=L^{-1}_s\left(\sum_{k=0}^{\infty}\frac{s^k}{(2k)!}\right)=\sum_{k=0}^{\infty}\frac{1}{(2k)!\Gamma(-k)t^{k+1}} $$ now gamma for negative integers is infinity So we can say (as wolfram say) $$ \frac{1}{\Gamma(-k)}=0$$ finally $$ f(t)=L^{-1}_s\left(e^{-\sqrt{s}}\right)(t)=\frac{t^{-\frac{3}{2}}}{2\sqrt{\pi}}e^{-\frac{1}{4t}} $$ So is that using of series to get the result of inverse Laplace transform wrong ? or its true just here and how ?

THIS QUESTION asked also on MSE

$\endgroup$
2
  • $\begingroup$ @Nemo I know the result and I just asking about using series is it correct way always ? and how the inverse transform of cosh function is zero ? $\endgroup$ Commented Jan 25, 2024 at 6:44
  • $\begingroup$ Perhaps $\cosh\left(\sqrt{s}\right)=\frac{e^{-\sqrt{s}}}{2}+\frac{e^{\sqrt{s}}}{2}$ provides some insight. The first term $\frac{e^{-\sqrt{s}}}{2}$ leads back to the original problem, but how would you evaluate the inverse Laplace transform of $\frac{e^{\sqrt{s}}}{2}$ where $e^{\sqrt{s}}=\sum\limits_{k=0}^{\infty} \frac{1}{k!} s^{k/2}$? $\endgroup$ Commented Jan 25, 2024 at 17:08

1 Answer 1

6
$\begingroup$

Let me first look at a simpler example, instead of the square root consider the inverse Laplace transform of $e^{-s}$. If you write the series expansion and invert term by term you obtain $$L^{-1}_s\left(e^{-{s}}\right)(t)=L^{-1}_s\left(\sum_{k=0}^{\infty}\frac{(-1)^k}{k!} s^k\right)(t)=\sum_{k=0}^\infty \frac{(-1)^k t^{-k-1}}{k! \Gamma (-k)}=0.$$ The correct answer is $$L^{-1}_s\left(e^{-{s}}\right)(t)=\delta(t-1),$$ so you miss the delta function.


A similar contribution is missed in the square root case from the OP. The inverse Laplace transform of $\cosh\sqrt{s}$ is not zero but a series of derivatives of delta functions, $$L^{-1}_s\left(\cosh\left(\sqrt{s}\right)\right)=L^{-1}_s\left(\sum_{k=0}^{\infty}\frac{s^k}{(2k)!}\right)=\sum_{k=0}^\infty\frac{1}{2k!}\frac{d^k}{dt^k}\delta(t).$$

$\endgroup$
2
  • $\begingroup$ ok and now what about my example ? should I add delta function for the inverse Laplace transform of $e^{-\sqrt{s}}$ ? I think using series like this way is correct but need some conditions . $\endgroup$ Commented Jan 25, 2024 at 15:42
  • 1
    $\begingroup$ yes, the inverse Laplace transform of $\cosh\sqrt{s}$ contains delta functions $\delta(t)$ and derivatives, so you can set it to zero for $t>0$. $\endgroup$ Commented Jan 25, 2024 at 20:53

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.